WANDB Demo
Sweep report
import modelimport AwesomeNewBlockmodel.add(AwesomeNewBlock)
Setup
Library and account
Quickstart page : https://docs.wandb.ai/quickstart
- Install library
-
Create account and login:
-
If .git in project directory: automatically saves commit for each run
Script integration
-
Initialize and HPP
-
Specify project. Project is automatically created if it doesn't exist
-
Natively handles HPP: no need to use another library like argparse
- Log metrics
- Log and specify epoch
- Log once per epoch
- Log and specify epoch
Results :
-
Log images
- Monitor model as it is training
- Create visualizations from the WANDB UI
-
Log model graph, parameters and gradients

see example : https://wandb.ai/lucas_p/wandb-demo/runs/007hgoi8?workspace=user-lucas_p
Sweeps
WANDB lets you run sweeps to search for the best HPP
Setup
WANDB will automatically analyze your runs and come up with a proposal for a set of HPP to explore.
Specify the search strategy, parameter distributions, early stopping (optional) in a .yaml file
Initialize the sweep, and you a provided with a sweep ID
Replace your usual "python3 train.py" by the provided command
--count 1 : if not specified, the agent will keep starting new runs each time one finishes.
With SLURM : simply start how many runs you want with --count 1
Results
https://wandb.ai/lucas_p/wandb-demo/sweeps/la5c3f2r?workspace=user-lucas_p
Image segmentation
Code
then simply
to_log["mask_img"] = mask_img
wandb.log(to_log)
Results

- Log images
- Monitor model as it is training
- Create visualizations from the WANDB UI
- Log model graph, parameters and gradients
Sweeps
Setup



Results

Image segmentation
Code
