Skip to main content

Pierrotlc's group workspace

ADAIN - 32x32

What makes this group special?
Tags

alight-rooster-188

Notes
Author
State
Finished
Start time
February 1st, 2022 6:37:44 AM
Runtime
34m 52s
Tracked hours
34m 28s
Run path
pierrotlc/AnimeStyleGAN/r2vo07hg
OS
Linux-5.15.15-76051515-generic-x86_64-with-glibc2.10
Python version
3.8.5
Git repository
git clone git@github.com:Futurne/AnimeStyleGAN.git
Git state
git checkout -b "alight-rooster-188" c799412421ea74cc630b153745113d1c79ef11cf
Command
launch_training.py
System Hardware
CPU count16
GPU count1
GPU typeNVIDIA GeForce RTX 3080 Laptop GPU
W&B CLI Version
0.12.9
Config

Config parameters are your model's inputs. Learn more

  • {} 37 keys
    • 256
    • [] 2 items
      • 0.5
      • 0.9
    • [] 2 items
      • 0.5
      • 0.5
    • "<torch.utils.data.dataloader.DataLoader object at 0x7fe42009dd60>"
    • "cuda"
    • 32
    • 32
    • 0.3
    • 200
    • 0.9
    • 0.9
    • 0.1
    • 0.0001
    • 0.00001
    • [] 2 items
      • 3
      • 8
    • [] 2 items
      • 3
      • 8
    • 256
    • 12
    • 50
    • 3
    • 5
    • 4
    • 10
    • "Discriminator( (first_conv): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(3, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) (blocks): ModuleList( (0): DiscriminatorBlock( (convs): ModuleList( (0): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(12, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(12, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (2): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(12, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (3): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(12, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (4): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(12, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) ) (downsample): Conv2d(12, 24, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) ) (1): DiscriminatorBlock( (convs): ModuleList( (0): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(24, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(24, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (2): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(24, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (3): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(24, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (4): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(24, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) ) (downsample): Conv2d(24, 48, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) ) (2): DiscriminatorBlock( (convs): ModuleList( (0): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(48, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(48, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (2): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(48, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (3): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(48, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (4): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(48, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) ) (downsample): Conv2d(48, 96, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) ) (3): DiscriminatorBlock( (convs): ModuleList( (0): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (2): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (3): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (4): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) ) (downsample): Conv2d(96, 192, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) ) (4): DiscriminatorBlock( (convs): ModuleList( (0): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (2): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (3): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (4): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) ) (downsample): Conv2d(192, 384, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) ) ) (classify): Sequential( (0): Conv2d(384, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): Flatten(start_dim=1, end_dim=-1) ) )"
    • "StyleGAN( (mapping): MappingNetwork( (norm): LayerNorm((32,), eps=1e-05, elementwise_affine=True) (layers): ModuleList( (0): Sequential( (0): Linear(in_features=32, out_features=32, bias=True) (1): LayerNorm((32,), eps=1e-05, elementwise_affine=True) (2): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Linear(in_features=32, out_features=32, bias=True) (1): LayerNorm((32,), eps=1e-05, elementwise_affine=True) (2): LeakyReLU(negative_slope=0.01) ) (2): Sequential( (0): Linear(in_features=32, out_features=32, bias=True) (1): LayerNorm((32,), eps=1e-05, elementwise_affine=True) (2): LeakyReLU(negative_slope=0.01) ) (3): Sequential( (0): Linear(in_features=32, out_features=32, bias=True) (1): LayerNorm((32,), eps=1e-05, elementwise_affine=True) (2): LeakyReLU(negative_slope=0.01) ) ) (out): Linear(in_features=32, out_features=32, bias=True) ) (synthesis): SynthesisNetwork( (blocks): ModuleList( (0): SynthesisBlock( (layers): ModuleList( (0): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) (2): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) ) (ada_in): AdaIN() (A1): Linear(in_features=32, out_features=512, bias=True) (A2): Linear(in_features=32, out_features=512, bias=True) (B1): Conv2d(10, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (B2): Conv2d(10, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) (1): SynthesisBlock( (upsample): ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (conv): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) (layers): ModuleList( (0): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) (2): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) ) (ada_in): AdaIN() (A1): Linear(in_features=32, out_features=256, bias=True) (A2): Linear(in_features=32, out_features=256, bias=True) (B1): Conv2d(10, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (B2): Conv2d(10, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) (2): SynthesisBlock( (upsample): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (conv): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) (layers): ModuleList( (0): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) (2): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) ) (ada_in): AdaIN() (A1): Linear(in_features=32, out_features=128, bias=True) (A2): Linear(in_features=32, out_features=128, bias=True) (B1): Conv2d(10, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (B2): Conv2d(10, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) (3): SynthesisBlock( (upsample): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (conv): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) (layers): ModuleList( (0): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) (2): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) ) (ada_in): AdaIN() (A1): Linear(in_features=32, out_features=64, bias=True) (A2): Linear(in_features=32, out_features=64, bias=True) (B1): Conv2d(10, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (B2): Conv2d(10, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) (4): SynthesisBlock( (upsample): ConvTranspose2d(32, 16, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (conv): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) (layers): ModuleList( (0): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) (2): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) ) (ada_in): AdaIN() (A1): Linear(in_features=32, out_features=32, bias=True) (A2): Linear(in_features=32, out_features=32, bias=True) (B1): Conv2d(10, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (B2): Conv2d(10, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) ) (to_rgb): Conv2d(16, 3, kernel_size=(1, 1), stride=(1, 1)) ) )"
    • "Adam ( Parameter Group 0 amsgrad: False betas: (0.5, 0.9) eps: 1e-08 initial_lr: 0.0001 lr: 0.0001 weight_decay: 0 )"
    • "Adam ( Parameter Group 0 amsgrad: False betas: (0.5, 0.5) eps: 1e-08 initial_lr: 1e-05 lr: 1e-05 weight_decay: 0 )"
    • 0.9
    • 0.7
    • 0
    • "<torch.optim.lr_scheduler.MultiStepLR object at 0x7fe429ebc610>"
    • "<torch.optim.lr_scheduler.MultiStepLR object at 0x7fe42009da30>"
    • 1
    • 0.1
    • 0
    • 0
    • 1
Summary

Summary metrics are your model's outputs. Learn more

  • {} 9 keys
    • -14,274.946462402344
    • -245,371.533125
    • -1,459,107.1475
    • 32,452.216247558594
    • 32,452.216247558594
    • {} 7 keys
      • 4,913,195.065625
      • 0.00000003012100027178
      • 0.00000000019768499782
    Artifact Outputs

    This run produced these artifacts as outputs. Total: 1. Learn more

    Loading...