Pierrotlc's group workspace
BCE - 32x32
What makes this group special?
Tags
peachy-thunder-94
Notes
Author
State
Finished
Start time
January 26th, 2022 12:33:28 AM
Runtime
26m 21s
Tracked hours
25m 55s
Run path
pierrotlc/AnimeStyleGAN/16wezq2a
OS
Linux-5.15.15-76051515-generic-x86_64-with-glibc2.10
Python version
3.8.5
Git repository
git clone git@github.com:Futurne/AnimeStyleGAN.git
Git state
git checkout -b "peachy-thunder-94" 5e69917e5456bb517e3836df16ec72aed04ecd9f
Command
launch_training.py
System Hardware
| CPU count | 16 |
| GPU count | 1 |
| GPU type | NVIDIA GeForce RTX 3080 Laptop GPU |
W&B CLI Version
0.12.9
Group
BCE - 32x32Config
Config parameters are your model's inputs. Learn more
- {} 21 keys▶
- 64
- [] 2 items▶
- 0.5
- 0.99
- [] 2 items▶
- 0.5
- 0.99
- "cuda"
- 32
- 100
- 0.3
- 30
- 0.0001
- 0.00001
- 256
- 16
- 2
- 4
- "Discriminator( (first_conv): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(3, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) (blocks): ModuleList( (0): DiscriminatorBlock( (convs): ModuleList( (0): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) ) (downsample): Conv2d(16, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) ) (1): DiscriminatorBlock( (convs): ModuleList( (0): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) ) (downsample): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) ) (2): DiscriminatorBlock( (convs): ModuleList( (0): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) ) (downsample): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) ) (3): DiscriminatorBlock( (convs): ModuleList( (0): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) ) (downsample): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) ) (4): DiscriminatorBlock( (convs): ModuleList( (0): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) ) (downsample): Conv2d(256, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) ) ) (classify): Sequential( (0): Conv2d(512, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): Flatten(start_dim=1, end_dim=-1) ) )"
- "StyleGAN( (mapping): MappingNetwork( (norm): LayerNorm((100,), eps=1e-05, elementwise_affine=True) (fully_connected): ModuleList( (0): Sequential( (0): Linear(in_features=100, out_features=100, bias=True) (1): LayerNorm((100,), eps=1e-05, elementwise_affine=True) (2): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Linear(in_features=100, out_features=100, bias=True) (1): LayerNorm((100,), eps=1e-05, elementwise_affine=True) (2): LeakyReLU(negative_slope=0.01) ) (2): Sequential( (0): Linear(in_features=100, out_features=100, bias=True) (1): LayerNorm((100,), eps=1e-05, elementwise_affine=True) (2): LeakyReLU(negative_slope=0.01) ) (3): Sequential( (0): Linear(in_features=100, out_features=100, bias=True) (1): LayerNorm((100,), eps=1e-05, elementwise_affine=True) (2): LeakyReLU(negative_slope=0.01) ) ) (out_layer): Linear(in_features=100, out_features=100, bias=True) ) (synthesis): SynthesisNetwork( (blocks): ModuleList( (0): SynthesisBlock( (conv2): Sequential( (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.01) ) (ada_in): AdaIN() ) (1): SynthesisBlock( (upsample): ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (conv1): Sequential( (0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.01) ) (conv2): Sequential( (0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.01) ) (ada_in): AdaIN() ) (2): SynthesisBlock( (upsample): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (conv1): Sequential( (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.01) ) (conv2): Sequential( (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.01) ) (ada_in): AdaIN() ) (3): SynthesisBlock( (upsample): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (conv1): Sequential( (0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.01) ) (conv2): Sequential( (0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.01) ) (ada_in): AdaIN() ) ) (to_rgb): Conv2d(32, 3, kernel_size=(1, 1), stride=(1, 1)) ) )"
- "Adam ( Parameter Group 0 amsgrad: False betas: (0.5, 0.99) eps: 1e-08 lr: 0.0001 weight_decay: 0 )"
- "Adam ( Parameter Group 0 amsgrad: False betas: (0.5, 0.99) eps: 1e-08 lr: 1e-05 weight_decay: 0 )"
- 0
- "<torch.utils.data.dataloader.DataLoader object at 0x7f0dea770c40>"
- "<torch.utils.data.dataloader.DataLoader object at 0x7f0dea770b50>"
Summary
Summary metrics are your model's outputs. Learn more
- {} 7 keys▶
- 6.096827113314679
- 6.097842981940822
- 0.0010158680180259246
- 0.0026546897072541086
- 0.002642223037822221
- {} 7 keys▶
- 0.9989866504543706
Artifact Outputs
This run produced these artifacts as outputs. Total: 3. Learn more
Type
Name
Consumer count
Loading...