Skip to main content

Pierrotlc's group workspace

Wasserstein - 32x32

What makes this group special?
Tags

misty-dew-72

Notes
Author
State
Failed
Start time
January 24th, 2022 4:43:40 PM
Runtime
27m 20s
Tracked hours
27m 16s
Run path
pierrotlc/AnimeStyleGAN/9mfxwrfc
OS
Linux-5.15.15-76051515-generic-x86_64-with-glibc2.10
Python version
3.8.5
Git repository
git clone git@github.com:Futurne/AnimeStyleGAN.git
Git state
git checkout -b "misty-dew-72" ae8f98769756d947b272a72179819c7bbc94ce0c
Command
launch_training.py
System Hardware
CPU count16
GPU count1
GPU typeNVIDIA GeForce RTX 3080 Laptop GPU
W&B CLI Version
0.12.9
Config

Config parameters are your model's inputs. Learn more

  • {} 23 keys
    • 128
    • [] 2 items
      • 0.5
      • 0.99
    • [] 2 items
      • 0.7
      • 0.99
    • "cuda"
    • 32
    • 32
    • 0.3
    • 100
    • 3
    • 0.00001
    • 0.00005
    • 128
    • 8
    • 2
    • 3
    • "Discriminator( (first_conv): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(3, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) (blocks): ModuleList( (0): DiscriminatorBlock( (convs): ModuleList( (0): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(8, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(8, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) ) (downsample): Conv2d(8, 16, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) ) (1): DiscriminatorBlock( (convs): ModuleList( (0): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) ) (downsample): Conv2d(16, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) ) (2): DiscriminatorBlock( (convs): ModuleList( (0): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) ) (downsample): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) ) (3): DiscriminatorBlock( (convs): ModuleList( (0): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) ) (downsample): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) ) (4): DiscriminatorBlock( (convs): ModuleList( (0): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) ) (downsample): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) ) ) (classify): Sequential( (0): Conv2d(256, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): Flatten(start_dim=1, end_dim=-1) ) )"
    • "StyleGAN( (mapping): MappingNetwork( (norm): LayerNorm((32,), eps=1e-05, elementwise_affine=True) (fully_connected): ModuleList( (0): Sequential( (0): Linear(in_features=32, out_features=32, bias=True) (1): LayerNorm((32,), eps=1e-05, elementwise_affine=True) (2): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Linear(in_features=32, out_features=32, bias=True) (1): LayerNorm((32,), eps=1e-05, elementwise_affine=True) (2): LeakyReLU(negative_slope=0.01) ) (2): Sequential( (0): Linear(in_features=32, out_features=32, bias=True) (1): LayerNorm((32,), eps=1e-05, elementwise_affine=True) (2): LeakyReLU(negative_slope=0.01) ) ) (out_layer): Linear(in_features=32, out_features=32, bias=True) ) (synthesis): SynthesisNetwork( (blocks): ModuleList( (0): SynthesisBlock( (conv2): Sequential( (0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.01) ) (ada_in): AdaIN() ) (1): SynthesisBlock( (upsample): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (conv1): Sequential( (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.01) ) (conv2): Sequential( (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.01) ) (ada_in): AdaIN() ) (2): SynthesisBlock( (upsample): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (conv1): Sequential( (0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.01) ) (conv2): Sequential( (0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.01) ) (ada_in): AdaIN() ) (3): SynthesisBlock( (upsample): ConvTranspose2d(32, 16, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (conv1): Sequential( (0): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.01) ) (conv2): Sequential( (0): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.01) ) (ada_in): AdaIN() ) ) (to_rgb): Conv2d(16, 3, kernel_size=(1, 1), stride=(1, 1)) ) )"
    • "Adam ( Parameter Group 0 amsgrad: False betas: (0.5, 0.99) eps: 1e-08 lr: 1e-05 weight_decay: 0 )"
    • "Adam ( Parameter Group 0 amsgrad: False betas: (0.7, 0.99) eps: 1e-08 lr: 5e-05 weight_decay: 0 )"
    • 0
    • "<torch.utils.data.dataloader.DataLoader object at 0x7f65d24dac10>"
    • "<torch.utils.data.dataloader.DataLoader object at 0x7f65d24dab20>"
    • 3
Summary

Summary metrics are your model's outputs. Learn more

  • {} 15 keys
    • {} 7 keys
      • 0
      • 287.48831894818477
      • 938.692138671875
      • 1
      • -340.5576961741728
      • 0.5
      • 2,763.007008272059
      • 0
      • 287.53100405241315
      • 931.265918932463
      • 1
      • -339.219056581196
      • 0.5
      • 2,742.10970105623
    Artifact Outputs

    This run produced these artifacts as outputs. Total: 1. Learn more

    Loading...