Pierrotlc's group workspace
Test
What makes this group special?
Tags
Notes
Author
State
Finished
Start time
October 1st, 2022 8:26:38 AM
Runtime
2m 47s
Tracked hours
2m 42s
Run path
pierrotlc/animevae/3w0f6uu9
OS
Linux-5.19.11-200.fc36.x86_64-x86_64-with-glibc2.35
Python version
3.10.7
Git repository
git clone git@github.com:Futurne/anime_vae.git
Git state
git checkout -b "dulcet-shape-7" 44c5c84f7b5f9eb9f3ff43d7b6154fb480ab028c
Command
/home/pierrotlc/Documents/anime_vae/main.py default.yaml
System Hardware
| CPU count | 16 |
| GPU count | 1 |
| GPU type | NVIDIA GeForce RTX 3080 Laptop GPU |
W&B CLI Version
0.13.3
Group
TestConfig
Config parameters are your model's inputs. Learn more
- {} 12 keys▶
- {} 3 keys▶
- 32
- 3
- "./images/"
- "cuda"
- [] 4 items▶
- 128
- 3
- 32
- 32
- "VAE( (encoder): VAEEncoder( (cnn_encoder): CNNEncoder( (project_layer): Sequential( (0): Conv2d(3, 16, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False) (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.01) ) (layers): ModuleList( (0): Sequential( (0): ResBlock( (conv_block): Sequential( (0): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False) (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.01) ) ) (1): ReduceBlock( (conv_block): Sequential( (0): Conv2d(16, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.01) ) ) ) (1): Sequential( (0): ResBlock( (conv_block): Sequential( (0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False) (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.01) ) ) (1): ReduceBlock( (conv_block): Sequential( (0): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.01) ) ) ) (2): Sequential( (0): ResBlock( (conv_block): Sequential( (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False) (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.01) ) ) (1): ReduceBlock( (conv_block): Sequential( (0): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.01) ) ) ) (3): Sequential( (0): ResBlock( (conv_block): Sequential( (0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False) (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.01) ) ) (1): ReduceBlock( (conv_block): Sequential( (0): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.01) ) ) ) ) ) (project_latent): Sequential( (0): Conv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=same) (1): Rearrange('b (d e) w h -> b d e w h', d=2) ) ) (decoder): VAEDecoder( (cnn_decoder): CNNDecoder( (project_layer): Sequential( (0): Conv2d(64, 256, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False) (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.01) ) (layers): ModuleList( (0): Sequential( (0): ResBlock( (conv_block): Sequential( (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False) (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.01) ) ) (1): ReduceBlock( (conv_block): Sequential( (0): ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.01) ) ) ) (1): Sequential( (0): ResBlock( (conv_block): Sequential( (0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False) (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.01) ) ) (1): ReduceBlock( (conv_block): Sequential( (0): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.01) ) ) ) (2): Sequential( (0): ResBlock( (conv_block): Sequential( (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False) (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.01) ) ) (1): ReduceBlock( (conv_block): Sequential( (0): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.01) ) ) ) (3): Sequential( (0): ResBlock( (conv_block): Sequential( (0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False) (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.01) ) ) (1): ReduceBlock( (conv_block): Sequential( (0): ConvTranspose2d(32, 16, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.01) ) ) ) ) ) (project_rgb): Conv2d(16, 3, kernel_size=(3, 3), stride=(1, 1), padding=same) ) )"
- {} 3 keys▶
- 64
- 16
- 4
- "Adam ( Parameter Group 0 amsgrad: False betas: (0.9, 0.999) capturable: False eps: 1e-08 foreach: None lr: 0.0001 maximize: False weight_decay: 0 )"
- true
- "<torch.utils.data.dataloader.DataLoader object at 0x7f9c1a886650>"
- "<src.dataset.AnimeDataset object at 0x7f9c1a8871c0>"
- {} 5 keys▶
- "<torch.utils.data.dataloader.DataLoader object at 0x7f9c1a886ce0>"
- "<src.dataset.AnimeDataset object at 0x7f9c1a886fb0>"
Summary
Summary metrics are your model's outputs. Learn more
- {} 9 keys▶
- {} 7 keys▶
- 0.5942114138603211
- {} 7 keys▶
- 0.005366912288591266
- 0.604945238828659
- 0.59407139588241
- {} 7 keys▶
- 0.0053744194748338745
- 0.6048202369380836
Artifact Outputs
This run produced these artifacts as outputs. Total: 1. Learn more
Type
Name
Consumer count
Loading...