Pierrotlc's group workspace
Group: Test
State
Notes
User
Tags
Created
Runtime
Sweep
data.image_size
data.n_channels
data.path_dir
device
group
input_size
model
net_arch.n_channels_latent
net_arch.n_filters
net_arch.n_layers
optimizer
prepared
test_loader
test_set
train.KLD_weight
train.batch_size
train.lr
train.n_epochs
train.seed
train_loader
train_set
Test - BCE
Test - KLD
Test - loss
Train - BCE
Train - KLD
Train - loss
Finished
-
pierrotlc
2m 47s
-
32
3
./images/
cuda
-
[128,3,32,32]
VAE(
(encoder): VAEEncoder(
(cnn_encoder): CNNEncoder(
(project_layer): Sequential(
(0): Conv2d(3, 16, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
(layers): ModuleList(
(0): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): Conv2d(16, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(1): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(2): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(3): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
)
)
(project_latent): Sequential(
(0): Conv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=same)
(1): Rearrange('b (d e) w h -> b d e w h', d=2)
)
)
(decoder): VAEDecoder(
(cnn_decoder): CNNDecoder(
(project_layer): Sequential(
(0): Conv2d(64, 256, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
(layers): ModuleList(
(0): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(1): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(2): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(3): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): ConvTranspose2d(32, 16, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
)
)
(project_rgb): Conv2d(16, 3, kernel_size=(3, 3), stride=(1, 1), padding=same)
)
)
64
16
4
Adam (
Parameter Group 0
amsgrad: False
betas: (0.9, 0.999)
capturable: False
eps: 1e-08
foreach: None
lr: 0.0001
maximize: False
weight_decay: 0
)
true
<torch.utils.data.dataloader.DataLoader object at 0x7f9c1a886650>
<src.dataset.AnimeDataset object at 0x7f9c1a8871c0>
2
128
0.0001
5
42
<torch.utils.data.dataloader.DataLoader object at 0x7f9c1a886ce0>
<src.dataset.AnimeDataset object at 0x7f9c1a886fb0>
0.59421
0.0053669
0.60495
0.59407
0.0053744
0.60482
Failed
-
pierrotlc
2m 7s
-
32
3
./images/
cuda
-
[128,3,32,32]
VAE(
(encoder): VAEEncoder(
(cnn_encoder): CNNEncoder(
(project_layer): Sequential(
(0): Conv2d(3, 16, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
(layers): ModuleList(
(0): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): Conv2d(16, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(1): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(2): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(3): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
)
)
(project_latent): Sequential(
(0): Conv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=same)
(1): Rearrange('b (d e) w h -> b d e w h', d=2)
)
)
(decoder): VAEDecoder(
(cnn_decoder): CNNDecoder(
(project_layer): Sequential(
(0): Conv2d(64, 256, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
(layers): ModuleList(
(0): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(1): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(2): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(3): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): ConvTranspose2d(32, 16, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
)
)
(project_rgb): Conv2d(16, 3, kernel_size=(3, 3), stride=(1, 1), padding=same)
)
)
64
16
4
Adam (
Parameter Group 0
amsgrad: False
betas: (0.9, 0.999)
capturable: False
eps: 1e-08
foreach: None
lr: 0.0001
maximize: False
weight_decay: 0
)
true
<torch.utils.data.dataloader.DataLoader object at 0x7efe1d07a5c0>
<src.dataset.AnimeDataset object at 0x7efe1d07b130>
2
128
0.0001
5
42
<torch.utils.data.dataloader.DataLoader object at 0x7efe1d07ac50>
<src.dataset.AnimeDataset object at 0x7efe1d07af20>
-8.90084
0.0070125
-8.88681
-8.89789
0.0072638
-8.88336
Finished
-
pierrotlc
2m 57s
-
32
3
./images/
cuda
-
[128,3,32,32]
VAE(
(encoder): VAEEncoder(
(cnn_encoder): CNNEncoder(
(project_layer): Sequential(
(0): Conv2d(3, 16, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
(layers): ModuleList(
(0): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): Conv2d(16, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(1): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(2): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(3): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
)
)
(project_latent): Sequential(
(0): Conv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=same)
(1): Rearrange('b (d e) w h -> b d e w h', d=2)
)
)
(decoder): VAEDecoder(
(cnn_decoder): CNNDecoder(
(project_layer): Sequential(
(0): Conv2d(64, 256, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
(layers): ModuleList(
(0): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(1): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(2): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(3): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): ConvTranspose2d(32, 16, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
)
)
(project_rgb): Conv2d(16, 3, kernel_size=(3, 3), stride=(1, 1), padding=same)
)
)
64
16
4
Adam (
Parameter Group 0
amsgrad: False
betas: (0.9, 0.999)
capturable: False
eps: 1e-08
foreach: None
lr: 0.0001
maximize: False
weight_decay: 0
)
true
<torch.utils.data.dataloader.DataLoader object at 0x7fd9ac28b130>
<src.dataset.AnimeDataset object at 0x7fd9ac28b1f0>
2
128
0.0001
5
42
<torch.utils.data.dataloader.DataLoader object at 0x7fd9ac28ad70>
<src.dataset.AnimeDataset object at 0x7fd9ac28afb0>
-22.41522
0.1077
-22.19982
-22.47697
0.10778
-22.26141
Finished
-
pierrotlc
3m 7s
-
32
3
./images/
cuda
-
[128,3,32,32]
VAE(
(encoder): VAEEncoder(
(cnn_encoder): CNNEncoder(
(project_layer): Sequential(
(0): Conv2d(3, 16, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
(layers): ModuleList(
(0): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): Conv2d(16, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(1): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(2): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(3): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
)
)
(project_latent): Sequential(
(0): Conv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=same)
(1): Rearrange('b (d e) w h -> b d e w h', d=2)
)
)
(decoder): VAEDecoder(
(cnn_decoder): CNNDecoder(
(project_layer): Sequential(
(0): Conv2d(64, 256, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
(layers): ModuleList(
(0): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(1): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(2): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(3): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): ConvTranspose2d(32, 16, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
)
)
(project_rgb): Conv2d(16, 3, kernel_size=(3, 3), stride=(1, 1), padding=same)
)
)
64
16
4
Adam (
Parameter Group 0
amsgrad: False
betas: (0.9, 0.999)
capturable: False
eps: 1e-08
foreach: None
lr: 0.0001
maximize: False
weight_decay: 0
)
true
<torch.utils.data.dataloader.DataLoader object at 0x7faff2c830a0>
<src.dataset.AnimeDataset object at 0x7faff2c83160>
2
128
0.0001
5
42
<torch.utils.data.dataloader.DataLoader object at 0x7faff2c82ce0>
<src.dataset.AnimeDataset object at 0x7faff2c82f20>
-5.95138
0.09975
-5.75188
-6.02728
0.1001
-5.82708
Failed
-
pierrotlc
8m 13s
-
32
3
./images/
cuda
-
[128,3,32,32]
VAE(
(encoder): VAEEncoder(
(cnn_encoder): CNNEncoder(
(project_layer): Sequential(
(0): Conv2d(3, 16, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
(layers): ModuleList(
(0): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): Conv2d(16, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(1): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(2): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(3): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(4): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): Conv2d(256, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
)
)
(project_latent): Sequential(
(0): Conv2d(512, 128, kernel_size=(3, 3), stride=(1, 1), padding=same)
(1): Rearrange('b (d e) w h -> b d e w h', d=2)
)
)
(decoder): VAEDecoder(
(cnn_decoder): CNNDecoder(
(project_layer): Sequential(
(0): Conv2d(64, 512, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
(layers): ModuleList(
(0): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): ConvTranspose2d(512, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(1): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(2): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(3): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(4): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): ConvTranspose2d(32, 16, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
)
)
(project_rgb): Conv2d(16, 3, kernel_size=(3, 3), stride=(1, 1), padding=same)
)
)
64
16
5
Adam (
Parameter Group 0
amsgrad: False
betas: (0.9, 0.999)
capturable: False
eps: 1e-08
foreach: None
lr: 0.0001
maximize: False
weight_decay: 0
)
true
<torch.utils.data.dataloader.DataLoader object at 0x7f6b3324b700>
<src.dataset.AnimeDataset object at 0x7f6b3324b6a0>
2
128
0.0001
20
42
<torch.utils.data.dataloader.DataLoader object at 0x7f6b3324b3a0>
<src.dataset.AnimeDataset object at 0x7f6b3324b550>
-21.99898
0.2236
-21.55178
-22.38432
0.22422
-21.93589
Failed
-
pierrotlc
14m 17s
-
32
3
./images/
cuda
-
[64,3,32,32]
VAE(
(encoder): VAEEncoder(
(cnn_encoder): CNNEncoder(
(project_layer): Sequential(
(0): Conv2d(3, 16, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
(layers): ModuleList(
(0): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): Conv2d(16, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(1): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(2): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(3): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(4): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): Conv2d(256, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
)
)
(project_latent): Sequential(
(0): Conv2d(512, 128, kernel_size=(3, 3), stride=(1, 1), padding=same)
(1): Rearrange('b (d e) w h -> b d e w h', d=2)
)
)
(decoder): VAEDecoder(
(cnn_decoder): CNNDecoder(
(project_layer): Sequential(
(0): Conv2d(64, 512, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
(layers): ModuleList(
(0): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): ConvTranspose2d(512, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(1): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(2): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(3): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(4): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): ConvTranspose2d(32, 16, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
)
)
(project_rgb): Conv2d(16, 3, kernel_size=(3, 3), stride=(1, 1), padding=same)
)
)
64
16
5
Adam (
Parameter Group 0
amsgrad: False
betas: (0.9, 0.999)
capturable: False
eps: 1e-08
foreach: None
lr: 0.0001
maximize: False
weight_decay: 0
)
true
<torch.utils.data.dataloader.DataLoader object at 0x7fd8dea836a0>
<src.dataset.AnimeDataset object at 0x7fd8dea83640>
1
64
0.0001
20
42
<torch.utils.data.dataloader.DataLoader object at 0x7fd8dea83340>
<src.dataset.AnimeDataset object at 0x7fd8dea834f0>
-125.17242
0.76529
-124.40714
-126.89707
0.77062
-126.12646
Finished
-
pierrotlc
6m 22s
-
32
3
./images/
cuda
-
[64,3,32,32]
VAE(
(encoder): VAEEncoder(
(cnn_encoder): CNNEncoder(
(project_layer): Sequential(
(0): Conv2d(3, 8, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
(layers): ModuleList(
(0): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(8, 8, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): Conv2d(8, 16, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(1): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): Conv2d(16, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(2): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(3): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
)
)
(project_latent): Sequential(
(0): Conv2d(128, 48, kernel_size=(3, 3), stride=(1, 1), padding=same)
(1): Rearrange('b (d e) w h -> b d e w h', d=2)
)
)
(decoder): VAEDecoder(
(cnn_decoder): CNNDecoder(
(project_layer): Sequential(
(0): Conv2d(24, 128, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
(layers): ModuleList(
(0): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(1): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(2): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): ConvTranspose2d(32, 16, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(3): Sequential(
(0): ResBlock(
(conv_block): Sequential(
(0): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
(1): ReduceBlock(
(conv_block): Sequential(
(0): ConvTranspose2d(16, 8, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
)
)
(project_rgb): Conv2d(8, 3, kernel_size=(3, 3), stride=(1, 1), padding=same)
)
)
24
8
4
Adam (
Parameter Group 0
amsgrad: False
betas: (0.9, 0.999)
capturable: False
eps: 1e-08
foreach: None
lr: 0.0001
maximize: False
weight_decay: 0
)
true
<torch.utils.data.dataloader.DataLoader object at 0x7f989f73b190>
<src.dataset.AnimeDataset object at 0x7f989f73b250>
0.5
64
0.0001
10
42
<torch.utils.data.dataloader.DataLoader object at 0x7f989f73add0>
<src.dataset.AnimeDataset object at 0x7f989f73b010>
-24.47932
0.65594
-24.15135
-24.6312
0.6569
-24.30275
1-7
of 7