The developer-first
MLOps platform

Build better models faster with experiment tracking, dataset versioning, and model management

Play
Explore the Weights & Biases platform

Weights & Biases is available in the cloud or installed on your private infrastructure.

LEARN ABOUT SELF-HOSTING
01

Integrate quickly

Track, compare, and visualize ML experiments with 5 lines of code. Free for academic and open source projects.

try a live notebook
# Flexible integration for any Python script
import wandb
# 1. Start a W&B run
wandb.init(project='gpt4')
config = wandb.config
config.learning_rate = 0.01
# 2. Save model inputs and hyperparameters
# Model training here
# 3. Log metrics over time to visualize performance
wandb.log({"loss": loss})
import wandb
# 1. Start a W&B run
wandb.init(project='gpt3')
# 2. Save model inputs and hyperparameters
config = wandb.config
config.learning_rate = 0.01
# Model training here
# 3. Log metrics over time to visualize performance
with tf.Session() as sess:
# ...
wandb.tensorflow.log(tf.summary.merge_all())
import wandb
# 1. Start a new run
wandb.init(project="gpt-3")
# 2. Save model inputs and hyperparameters
config = wandb.config
config.learning_rate = 0.01
# 3. Log gradients and model parameters
wandb.watch(model)
for batch_idx, (data, target) in
enumerate(train_loader):
if batch_idx % args.log_interval == 0:
# 4. Log metrics to visualize performance
wandb.log({"loss": loss})
import wandb
from wandb.keras import WandbCallback
# 1. Start a new run
wandb.init(project="gpt-3")
# 2. Save model inputs and hyperparameters
config = wandb.config
config.learning_rate = 0.01
... Define a model
# 3. Log layer dimensions and metrics over time
model.fit(X_train, y_train, validation_data=(X_test, y_test),
callbacks=[WandbCallback()])
import wandb
wandb.init(project="visualize-sklearn")
# Model training here
# Log classifier visualizations
wandb.sklearn.plot_classifier(clf, X_train, X_test, y_train, y_test, y_pred, y_probas, labels, model_name='SVC', feature_names=None)
# Log regression visualizations
wandb.sklearn.plot_regressor(reg, X_train, X_test, y_train, y_test,  model_name='Ridge')
# Log clustering visualizations
wandb.sklearn.plot_clusterer(kmeans, X_train, cluster_labels, labels=None, model_name='KMeans')
# 1. Import wandb and login
import wandb
wandb.login()
# 2. Define which wandb project to log to and name your run
wandb.init(project="gpt-3", run_name='gpt-3-base-high-lr')
# 3. Add wandb in your Hugging Face `TrainingArguments`
args = TrainingArguments(... , report_to='wandb')
# 4. W&B logging will begin automatically when your start training your Trainer
trainer = Trainer(... , args=args)
trainer.train()
import wandb
# 1. Start a new run
wandb.init(project="visualize-models", name="xgboost")
# 2. Add the callback
bst = xgboost.train(param, xg_train, num_round, watchlist, callbacks=[wandb.xgboost.wandb_callback()])
# Get predictions
pred = bst.predict(xg_test)
02

Visualize seamlessly

Add W&B's lightweight integration to your existing ML code and quickly get live metrics, terminal logs, and system stats streamed to the centralized dashboard.

Watch Demo
03

Collaborate in real time

Explain how your model works, show graphs of how model versions improved, discuss bugs, and demonstrate progress towards milestones.

View Reports