Skip to main content

Pytorch Tutorial

Created on October 31|Last edited on September 30

TL;DR: Logging basic PyTorch models





In this project, I follow a wonderful tutorial on getting started with PyTorch from (yunjev) and instrument the examples with Weights & Biases, showing different ways to add logging, visualize training, and explore the effects of hyperparameters. The source tutorial features many examples split into three levels of difficulty. I've chosen three of these to demonstrate the approach: a basic feedforward net, a convolutional neural net, and a recurrent neural net. All these nets train on the golden standard of MNIST for simplicity. I hope to demonstrate how to conduct experiments with wandb and visualize the results in a clear and useful ways, with the eventual goal of building better, more explainable, and more theoretically sound models.

Run set
854
State
Notes
User
Tags
Created
Runtime
batch_size
conv_kernel_sie
conv_kernel_size
epochs
hidden_1
hidden_2
hidden_size
hidden_size_1
hidden_size_2
image_dim
input_size
l1_size
l2_size
latent_size
leaky_relu_1
leaky_relu_2
leaky_relu_const_1
leaky_relu_const_2
learning_rate.max
learning_rate.min
learning_rate
lr_d
lr_g
model_name
n_hidden
n_latent
num_classes
num_epochs
num_layers
sample_dir
seq_len
D(G(z))
D(x)
acc
d_loss_fake
d_loss_real
d_loss_total
epoch
g_loss
loss
Killed
-
stacey
1m 35s
32
-
5
10
-
-
-
-
-
-
-
32
128
-
-
-
-
-
-
-
0.001
-
-
cnn example
-
-
-
-
-
-
-
-
-
99.23
-
-
-
4
-
0.0039648
Finished
-
stacey
rnn
2m 34s
100
-
-
20
-
-
64
-
-
-
28
-
-
-
-
-
-
-
-
-
0.01
-
-
-
-
-
10
-
2
-
28
-
-
97.92
-
-
-
19
-
0.013092
Finished
-
stacey
rnn
18s
100
-
-
2
-
-
64
-
-
-
28
-
-
-
-
-
-
-
-
-
0.01
-
-
-
-
-
10
-
2
-
28
-
-
98
-
-
-
1
-
0.15747
Finished
-
stacey
3m 4s
64
-
-
-
-
-
450
-
-
-
-
-
-
-
-
-
-
-
-
-
0.0025
-
-
-
-
-
-
25
-
-
-
-
-
98.07
-
-
-
24
-
0.041733
Finished
-
stacey
3m 44s
32
-
5
10
-
-
-
-
-
-
-
32
128
-
-
-
-
-
-
-
0.001
-
-
cnn example
-
-
-
-
-
-
-
-
-
99.1
-
-
-
9
-
0.00016235
Finished
-
stacey
2m 27s
100
-
-
10
-
-
128
-
-
-
28
-
-
-
-
-
-
-
-
-
0.003
-
-
-
-
-
10
-
2
-
28
-
-
98.74
-
-
-
9
-
0.0067541
Finished
-
stacey
6m 37s
32
-
5
10
-
-
-
-
-
-
-
32
128
-
-
-
-
-
-
-
0.001
-
-
cnn example
-
-
-
-
-
-
-
-
-
99.07
-
-
-
9
-
0.0023231
Finished
-
stacey
4m 2s
100
-
-
10
-
-
128
-
-
-
28
-
-
-
-
-
-
-
-
-
0.003
-
-
-
-
-
10
-
2
-
28
-
-
98.74
-
-
-
9
-
0.0067541
Finished
-
stacey
2m
512
-
-
10
-
-
200
-
-
-
28
-
-
-
-
-
-
-
-
-
0.003
-
-
-
-
-
10
-
4
-
28
-
-
98.92
-
-
-
9
-
0.065481
Finished
-
stacey
1m 42s
512
-
-
10
-
-
200
-
-
-
28
-
-
-
-
-
-
-
-
-
0.003
-
-
-
-
-
10
-
3
-
28
-
-
98.76
-
-
-
9
-
0.0040045
Finished
-
stacey
1m 29s
512
-
-
10
-
-
200
-
-
-
28
-
-
-
-
-
-
-
-
-
0.003
-
-
-
-
-
10
-
2
-
28
-
-
98.55
-
-
-
9
-
0.0068531
Finished
-
stacey
1m 54s
512
-
-
10
-
-
180
-
-
-
28
-
-
-
-
-
-
-
-
-
0.003
-
-
-
-
-
10
-
4
-
28
-
-
98.76
-
-
-
9
-
0.087766
Finished
-
stacey
1m 41s
512
-
-
10
-
-
180
-
-
-
28
-
-
-
-
-
-
-
-
-
0.003
-
-
-
-
-
10
-
3
-
28
-
-
98.63
-
-
-
9
-
0.029906
Finished
-
stacey
1m 26s
512
-
-
10
-
-
180
-
-
-
28
-
-
-
-
-
-
-
-
-
0.003
-
-
-
-
-
10
-
2
-
28
-
-
98.76
-
-
-
9
-
0.056413
Finished
-
stacey
1m 42s
512
-
-
10
-
-
160
-
-
-
28
-
-
-
-
-
-
-
-
-
0.003
-
-
-
-
-
10
-
4
-
28
-
-
99.02
-
-
-
9
-
0.0014069
Finished
-
stacey
1m 32s
512
-
-
10
-
-
160
-
-
-
28
-
-
-
-
-
-
-
-
-
0.003
-
-
-
-
-
10
-
3
-
28
-
-
98.98
-
-
-
9
-
0.0041388
Finished
-
stacey
1m 19s
512
-
-
10
-
-
160
-
-
-
28
-
-
-
-
-
-
-
-
-
0.003
-
-
-
-
-
10
-
2
-
28
-
-
98.93
-
-
-
9
-
0.0011784
Finished
-
stacey
1m 43s
512
-
-
10
-
-
140
-
-
-
28
-
-
-
-
-
-
-
-
-
0.003
-
-
-
-
-
10
-
4
-
28
-
-
98.8
-
-
-
9
-
0.022824
Finished
-
stacey
1m 32s
512
-
-
10
-
-
140
-
-
-
28
-
-
-
-
-
-
-
-
-
0.003
-
-
-
-
-
10
-
3
-
28
-
-
98.69
-
-
-
9
-
0.0055122
Finished
-
stacey
1m 19s
512
-
-
10
-
-
140
-
-
-
28
-
-
-
-
-
-
-
-
-
0.003
-
-
-
-
-
10
-
2
-
28
-
-
98.38
-
-
-
9
-
0.039649
1-20
of 854


01: Effect of hidden layer size on basic feedforward net



02: Overfitting in RNNs



CNN Layer Size Combinations



Section 5




Run set
854