Skip to main content

Experiments | Tin's Note

Created on March 21|Last edited on March 30

Dataset:

Since the dataset on SurreyLearn only contain 2665 images (missing 300 images for testing, and have no labels).
I have downloaded and split from the original CelebA-HQ (1024x1024) here:
It includes caption, and attributes as well for our advanced exps.
  • train_27000 and test_3000 are randomly split from original 30000 images.
  • train_2700 and test_300 are chosen from train_27000 and test_3000 => We can use this small sets for hyper-parameters tuning before scaling up to 27000.

Unconditional Results

Butterfly



CelebA-HQ (27000 train, 100 epochs + 300 val)

DDIM (100 inference steps):
Calculating FID between:
Real images dir: data/CelebA-HQ-split/test_300
Fake images dir: outputs/samples/ddim_fast
Resizing images to 128x128
Processing real images from: data/CelebA-HQ-split/test_300
Resolving data files: 100%|███████████████████████████████████████████████████████████████████████████████| 300/300 [00:00<00:00, 7121.30it/s]
Found 300 images
Finished processing 5 images
Processing fake images from: outputs/samples/ddim_fast
Resolving data files: 100%|███████████████████████████████████████████████████████████████████████████████| 300/300 [00:00<00:00, 7144.19it/s]
Downloading data: 100%|████████████████████████████████████████████████████████████████████████████████| 300/300 [00:00<00:00, 6677.02files/s]
Generating train split: 300 examples [00:00, 6668.00 examples/s]
Found 300 images
Finished processing 5 images
Calculating final FID score...
FID Score: 73.0482
DDPM (1000 inference steps):
Calculating FID between:
Real images dir: data/CelebA-HQ-split/test_300
Fake images dir: outputs/samples/ddpm_1000steps
Resizing images to 128x128
Processing real images from: data/CelebA-HQ-split/test_300
Resolving data files: 100%|█████████████████████████████████████████████████████████████████████████| 300/300 [00:00<00:00, 7362.52it/s]
Found 300 images
Finished processing 5 images
Processing fake images from: outputs/samples/ddpm_1000steps
Resolving data files: 100%|██████████████████████████████████████████████████████████████████████████| 300/300 [00:00<00:00, 7540.73it/s]
Downloading data: 100%|███████████████████████████████████████████████████████████████████████████| 300/300 [00:00<00:00, 7584.96files/s]
Generating train split: 300 examples [00:00, 6333.70 examples/s]
Found 300 images
Finished processing 5 images
Calculating final FID score...
FID Score: 65.6536


CelebA-HQ (27000 train, 100 epochs + 300 val)



CelebA-HQ (TA's 2700 train, DDPM 2000 steps, 100 epochs)

Calculating FID between:
Real images dir: data/celeba_hq_split/test
Fake images dir: outputs/samples/ddpm2000_2700train_100epochs
Resizing images to 128x128
Processing real images from: data/celeba_hq_split/test
Resolving data files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████| 300/300 [00:00<00:00, 964947.24it/s]
Found 300 images
Processed 16/300 images...
Processed 176/300 images...
Finished processing 300 images
Processing fake images from: outputs/samples/ddpm2000_2700train_100epochs
Resolving data files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████| 300/300 [00:00<00:00, 119541.25it/s]
Downloading data: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████| 300/300 [00:00<00:00, 91485.47files/s]
Generating train split: 300 examples [00:00, 25934.52 examples/s]
Found 300 images
Processed 16/300 images...
Processed 176/300 images...
Finished processing 300 images
Calculating final FID score...
FID Score: 103.7588


Baseline (TA's 2700 train)




FP32 (TA's 2700 train)


  • More smooth (less background noise).
  • Better capture small details like hairs.


Run set
145