Experiments | Tin's Note
Created on March 21|Last edited on March 30
Comment
Dataset:
Since the dataset on SurreyLearn only contain 2665 images (missing 300 images for testing, and have no labels).
I have downloaded and split from the original CelebA-HQ (1024x1024) here:
It includes caption, and attributes as well for our advanced exps.
- train_27000 and test_3000 are randomly split from original 30000 images.
- train_2700 and test_300 are chosen from train_27000 and test_3000 => We can use this small sets for hyper-parameters tuning before scaling up to 27000.
Unconditional Results
Butterfly
CelebA-HQ (27000 train, 100 epochs + 300 val)
DDIM (100 inference steps):
Calculating FID between:Real images dir: data/CelebA-HQ-split/test_300Fake images dir: outputs/samples/ddim_fastResizing images to 128x128Processing real images from: data/CelebA-HQ-split/test_300Resolving data files: 100%|███████████████████████████████████████████████████████████████████████████████| 300/300 [00:00<00:00, 7121.30it/s]Found 300 imagesFinished processing 5 imagesProcessing fake images from: outputs/samples/ddim_fastResolving data files: 100%|███████████████████████████████████████████████████████████████████████████████| 300/300 [00:00<00:00, 7144.19it/s]Downloading data: 100%|████████████████████████████████████████████████████████████████████████████████| 300/300 [00:00<00:00, 6677.02files/s]Generating train split: 300 examples [00:00, 6668.00 examples/s]Found 300 imagesFinished processing 5 imagesCalculating final FID score...FID Score: 73.0482
DDPM (1000 inference steps):
Calculating FID between:Real images dir: data/CelebA-HQ-split/test_300Fake images dir: outputs/samples/ddpm_1000stepsResizing images to 128x128Processing real images from: data/CelebA-HQ-split/test_300Resolving data files: 100%|██████████████████████████████████████████████████████████████████████████| 300/300 [00:00<00:00, 7362.52it/s]Found 300 imagesFinished processing 5 imagesProcessing fake images from: outputs/samples/ddpm_1000stepsResolving data files: 100%|██████████████████████████████████████████████████████████████████████████| 300/300 [00:00<00:00, 7540.73it/s]Downloading data: 100%|███████████████████████████████████████████████████████████████████████████| 300/300 [00:00<00:00, 7584.96files/s]Generating train split: 300 examples [00:00, 6333.70 examples/s]Found 300 imagesFinished processing 5 imagesCalculating final FID score...FID Score: 65.6536
CelebA-HQ (27000 train, 100 epochs + 300 val)
CelebA-HQ (TA's 2700 train, DDPM 2000 steps, 100 epochs)
Calculating FID between:Real images dir: data/celeba_hq_split/testFake images dir: outputs/samples/ddpm2000_2700train_100epochsResizing images to 128x128Processing real images from: data/celeba_hq_split/testResolving data files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████| 300/300 [00:00<00:00, 964947.24it/s]Found 300 imagesProcessed 16/300 images...Processed 176/300 images...Finished processing 300 imagesProcessing fake images from: outputs/samples/ddpm2000_2700train_100epochsResolving data files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████| 300/300 [00:00<00:00, 119541.25it/s]Downloading data: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████| 300/300 [00:00<00:00, 91485.47files/s]Generating train split: 300 examples [00:00, 25934.52 examples/s]Found 300 imagesProcessed 16/300 images...Processed 176/300 images...Finished processing 300 imagesCalculating final FID score...FID Score: 103.7588
Baseline (TA's 2700 train)

FP32 (TA's 2700 train)

- More smooth (less background noise).
- Better capture small details like hairs.
Run set
145
Add a comment