Skip to main content

Awni00's group workspace

Abstractor (Pre-Trained; reshuffled objects)

What makes this group special?
Tags

train size = 3000; trial = 9

Notes
Author
State
Finished
Start time
May 27th, 2023 6:42:15 AM
Runtime
35s
Tracked hours
31s
Run path
abstractor/object_argsort_autoregressive/kc1gi5sf
OS
Linux-4.18.0-425.13.1.el8_7.x86_64-x86_64-with-glibc2.28
Python version
3.10.8
Git repository
git clone https://github.com/jdlafferty/relational
Git state
git checkout -b "train-size-=-3000;-trial-=-9" b98437cbc7c2f1a78bfd13943d733bfd7fea87c5
Command
/diskarray/home/awni/projects/relational/experiments/object_argsort_autoregressive/evaluate_argsort_model_learning_curves.py --model abstractor --pretraining_mode pretraining --init_trainable True --pretraining_task_type "reshuffled objects" --pretraining_task_data_path object_sorting_datasets/product_structure_reshuffled_object_sort_dataset.npy --eval_task_data_path object_sorting_datasets/product_structure_object_sort_dataset.npy --n_epochs 500 --early_stopping True --min_train_size 100 --max_train_size 3000 --train_size_step 100 --num_trials 10 --start_trial 0 --pretraining_train_size 1000 --wandb_project_name object_argsort_autoregressive
System Hardware
CPU count20
Logical CPU count 20
GPU count1
GPU typeNVIDIA GeForce RTX 4090
W&B CLI Version
0.15.3
Config

Config parameters are your model's inputs. Learn more

  • {} 3 keys
    • "Abstractor (Pre-Trained; reshuffled objects)"
    • 3,000
    • 9
Summary

Summary metrics are your model's outputs. Learn more

  • {} 10 keys
    • "table-file"
    • 0.999895
    • 102
    • 0.0010000000474974513
    • 0.023468010127544403
    • 0.9929333329200744
    • 0.0003825004096142948
    • 0.9999799728393556
    • 0.99965
    • 0.9999650120735168
Artifact Inputs

This run consumed these artifacts as inputs. Learn more

Artifact Outputs

This run produced these artifacts as outputs. Total: 2. Learn more