Apiche's group workspace
Group: debug_actor_mcp_tir_again2
Name
1 visualized
State
Notes
User
Tags
Created
Runtime
Sweep
_cpu
_mixed_precision
actor.chunk_size
actor.discount_factor
actor.llm_max_rollouts
actor.log_each_n_secs
actor.max_reasoning_steps
actor.problem_queue_size
actor.result_queue_size
actor.rollout_policy
actor.rollout_workers
actor.sampling.method
actor.shared_memory_entry_size
actor.submit_delay
actor.system_prompt
actor.task_template
actor.threads_per_llm
actor.throughput_window_size
agent._target_
agent.llms.default.parameters.max_tokens
agent.llms.default.parameters.temperature
agent.max_iterations
agent.max_prompt_length
agent.name
agent.nodes
agent.store_llm_calls
agent.system_prompt
agent.templates.allowed_steps
agent.templates.allowed_tools
agent.templates.format
agent.templates.nodes
agent.templates.system_prompt
agent.templates.thought_format
agent_max_loops
also_save_steps
attempts
attn_implementation
auto_device_map
backend
config_name
cuda_empty_cache
dataset_loader
dataset_loader_params.dataset_path
dataset_loader_params.seeds
Crashed
-
apiche
4m 46s
-
-
-
-
1
1
0
-
64
64
pipelinerl.domains.tir_mcp.generate_mcp_rollout
1
-
10000000
-
Please reason step by step, and put your final answer within \boxed{}.
{task}
-
50
tapeagents.agent.Agent
-
-
3
-
mcp_agent
["{'_target_': 'tapeagents.nodes.StandardNode', 'name': 'plan', 'system_prompt': '${agent.templates.system_prompt}', 'guidance': 'Write a concise multi-step plan explaining which steps should be performed to find the answer for the given task.\\nBe specific about how each step should be performed. Only describe the intended actions here, do not perform them yet.\\nConsider that next steps may depend on results of previous steps, so include conditional branching using \"if\" statements where needed.\\nStart with the title \"Plan\". Every step should have short name and description.\\n${agent.templates.thought_format}\\n', 'steps_prompt': '${agent.templates.allowed_tools}'}","{'_target_': 'tapeagents.nodes.StandardNode', 'name': 'select', 'system_prompt': '${agent.templates.system_prompt}', 'trim_obs_except_last_n': 100, 'guidance': 'Select the next step to do to move forward with the plan. Describe the expected effect of the proposed action.\\n${agent.templates.thought_format}\\n', 'steps_prompt': '${agent.templates.allowed_tools}'}","{'_target_': 'tapeagents.nodes.StandardNode', 'name': 'act', 'system_prompt': '${agent.templates.system_prompt}', 'trim_obs_except_last_n': 100, 'guidance': 'Then produce single function call for the next step. If the answer is ready, call MathAnswer. Put your final answer within \\\\boxed{}.', 'steps': ['pipelinerl.domains.tir_mcp.steps.MathAnswer'], 'use_known_actions': True, 'use_function_calls': True}","{'_target_': 'tapeagents.nodes.StandardNode', 'name': 'summarize', 'system_prompt': '${agent.templates.system_prompt}', 'trim_obs_except_last_n': 100, 'guidance': 'Summarize last observation. If its an image, thoroughly describe it with all details.\\nDescribe the results of the last action and observed changes\\nDo not hallucinate or make up any information, only describe what you see in the observation.\\nDo not guess or assume action effects, describe only visible changes.\\n${agent.templates.thought_format}\\n'}","{'_target_': 'tapeagents.nodes.StandardNode', 'name': 'reflect', 'system_prompt': '${agent.templates.system_prompt}', 'trim_obs_except_last_n': 100, 'guidance': \"1. Evaluate the action's success, explain its effect on current step, overall plan and task solution.\\n2. If the last action was not successful, describe errors and the possible reasons for failure.\\n3. Check if the current plan step is finished. \\n4. If the step is finished, update the following steps of the plan with new information and choose the next step.\\n${agent.templates.thought_format}\\n\", 'next_node': 'select'}"]
true
-
You have access to the following tools:
{tools_description}
You have access to the following tools:
{tools_description}
Output only a single JSON dict. Do not repeat the last thought again. If the last action does not change the observation, do not repeat it! DO NOT OUTPUT ANYTHING BESIDES THE JSON! DO NOT PLACE ANY COMMENTS INSIDE THE JSON. It will break the system that processes the output.
-
You are an expert AI Agent trained to assist users with complex information processing tasks.
Your role is to understand user queries and respond in a helpful and accurate manner.
Keep your replies concise and direct. Prioritize clarity and avoid over-elaboration.
Do not express emotions or opinions about user questions.
Important! Respond with the plain text, do not include any JSON or code.
Do not output anything besides what I asked in this message.
3
-
1
-
-
-
-
-
pipelinerl.domains.math.load_datasets
-
-
1-1
of 1