Skip to main content

Ayush-thakur's group workspace

Spatial-Target-Clip-Mixup

What makes this group special?
Tags

resilient-galaxy-26

Notes

Train EfficientNetB0 by stacking all the target spectrograms spatially

Tags
effnetb0
full-channel
mixup
State
Finished
Start time
June 9th, 2021 5:24:47 AM
Runtime
11m 34s
Tracked hours
11m 33s
Run path
ayush-thakur/kaggle-seti-exp/1f5b2z93
OS
Linux-4.19.0-16-cloud-amd64-x86_64-with-debian-10.9
Python version
3.7.10
Command
SETI/train-seti-experiments.ipynb
System Hardware
CPU count8
GPU count1
GPU typeTesla V100-SXM2-16GB
W&B CLI Version
0.10.31
Job Type
train
Config

Config parameters are your model's inputs. Learn more

  • {} 14 keys
    • "CNN"
    • 64
    • 100
    • "Spatial-Target-Clip-Mixup"
    • 224
    • 224
    • "GCP"
    • 0.001
    • "EffNetB0"
    • 5
    • 1
    • 42
    • 0.2
    • true
Summary

Summary metrics are your model's outputs. Learn more

  • {} 9 keys
    • 0.9621053338050842
    • 13
    • 0.17124050855636597
    • 18
    • {} 4 keys
      • "graph-file"
      • "media/graph/graph_summary_4f9171eb.graph.json"
      • "4f9171eb9b607325ed2b57a268cbb9dff3c19af6b90bf668f0d6fdf4ae8e2fe4"
      • 1,126
    • 0.41490212082862854
    • 0.979439914226532
    • 0.9822264909744264
    • 0.1805720627307892
Artifact Outputs

This run produced these artifacts as outputs. Total: 1. Learn more

Loading...