Ayush-thakur's group workspace
Spatial-Target-Clip-Mixup
What makes this group special?
Tags
resilient-galaxy-26
Notes
Train EfficientNetB0 by stacking all the target spectrograms spatially
Tags
effnetb0
full-channel
mixup
Author
State
Finished
Start time
June 9th, 2021 5:24:47 AM
Runtime
11m 34s
Tracked hours
11m 33s
Run path
ayush-thakur/kaggle-seti-exp/1f5b2z93
OS
Linux-4.19.0-16-cloud-amd64-x86_64-with-debian-10.9
Python version
3.7.10
Command
SETI/train-seti-experiments.ipynb
System Hardware
| CPU count | 8 |
| GPU count | 1 |
| GPU type | Tesla V100-SXM2-16GB |
W&B CLI Version
0.10.31
Job Type
train
Config
Config parameters are your model's inputs. Learn more
- {} 14 keys▶
- "CNN"
- 64
- 100
- "Spatial-Target-Clip-Mixup"
- 224
- 224
- "GCP"
- 0.001
- "EffNetB0"
- 5
- 1
- 42
- 0.2
- true
Summary
Summary metrics are your model's outputs. Learn more
- {} 9 keys▶
- 0.9621053338050842
- 13
- 0.17124050855636597
- 18
- {} 4 keys▶
- "graph-file"
- "media/graph/graph_summary_4f9171eb.graph.json"
- "4f9171eb9b607325ed2b57a268cbb9dff3c19af6b90bf668f0d6fdf4ae8e2fe4"
- 1,126
- 0.41490212082862854
- 0.979439914226532
- 0.9822264909744264
- 0.1805720627307892
Artifact Outputs
This run produced these artifacts as outputs. Total: 1. Learn more
Type
Name
Consumer count
Loading...