Skip to main content

Ayush-thakur's group workspace

Spatial-Target-Clip

What makes this group special?
Tags

lemon-valley-22

Notes

Train EfficientNetB0 by stacking all the target spectrograms spatially

Tags
effnetb0
full-channel
State
Finished
Start time
June 9th, 2021 4:41:47 AM
Runtime
4m 18s
Tracked hours
4m 17s
Run path
ayush-thakur/kaggle-seti-exp/2xe9bjj1
OS
Linux-4.19.0-16-cloud-amd64-x86_64-with-debian-10.9
Python version
3.7.10
Command
SETI/train-seti-experiments.ipynb
System Hardware
CPU count8
GPU count1
GPU typeTesla V100-SXM2-16GB
W&B CLI Version
0.10.31
Job Type
train
Config

Config parameters are your model's inputs. Learn more

  • {} 14 keys
    • "CNN"
    • 64
    • 100
    • "Spatial-Target-Clip"
    • 224
    • 224
    • "GCP"
    • 0.001
    • "EffNetB0"
    • 5
    • 1
    • 42
    • 0.2
    • true
Summary

Summary metrics are your model's outputs. Learn more

  • {} 9 keys
    • 0.9930567741394044
    • 3
    • 0.20119531452655792
    • 8
    • {} 4 keys
      • "graph-file"
      • "media/graph/graph_summary_c749891c.graph.json"
      • "c749891cf0cb020147fb6224563e1b6b971d6201572eaf1ad1b5610a48537057"
      • 1,126
    • 0.10550723969936372
    • 0.9173949360847472
    • 0.9192144870758056
    • 0.28774794936180115
Artifact Outputs

This run produced these artifacts as outputs. Total: 1. Learn more

Loading...