Ayush-thakur's group workspace
Spatial-Target-Clip
What makes this group special?
Tags
lemon-valley-22
Notes
Train EfficientNetB0 by stacking all the target spectrograms spatially
Tags
effnetb0
full-channel
Author
State
Finished
Start time
June 9th, 2021 4:41:47 AM
Runtime
4m 18s
Tracked hours
4m 17s
Run path
ayush-thakur/kaggle-seti-exp/2xe9bjj1
OS
Linux-4.19.0-16-cloud-amd64-x86_64-with-debian-10.9
Python version
3.7.10
Command
SETI/train-seti-experiments.ipynb
System Hardware
| CPU count | 8 |
| GPU count | 1 |
| GPU type | Tesla V100-SXM2-16GB |
W&B CLI Version
0.10.31
Group
Spatial-Target-ClipJob Type
train
Config
Config parameters are your model's inputs. Learn more
- {} 14 keys▶
- "CNN"
- 64
- 100
- "Spatial-Target-Clip"
- 224
- 224
- "GCP"
- 0.001
- "EffNetB0"
- 5
- 1
- 42
- 0.2
- true
Summary
Summary metrics are your model's outputs. Learn more
- {} 9 keys▶
- 0.9930567741394044
- 3
- 0.20119531452655792
- 8
- {} 4 keys▶
- "graph-file"
- "media/graph/graph_summary_c749891c.graph.json"
- "c749891cf0cb020147fb6224563e1b6b971d6201572eaf1ad1b5610a48537057"
- 1,126
- 0.10550723969936372
- 0.9173949360847472
- 0.9192144870758056
- 0.28774794936180115
Artifact Outputs
This run produced these artifacts as outputs. Total: 1. Learn more
Type
Name
Consumer count
Loading...