Carschno's workspace
Runs
404
Name
394 visualized
Hostname: null
Hostname: null
59
Hostname: null
Hostname: null
333
Hostname: null
Hostname: null
12
Created
Runtime
End Time
ID
Notes
State
Updated
Tags
_modules._linear
_modules._page_embedding
_modules._rnn
_modules._softmax
batch_size
criterion
epochs
modules._linear
modules._page_embedding
modules._rnn
modules._softmax
optimizer
path
settings.CWD
settings.DATA_DIR
settings.DEFAULT_BASE_PATH
settings.DEFAULT_SERVER
settings.DEFAULT_THUMBNAIL_SIZE
settings.GENERALE_MISSIVEN_SHEET
settings.INVENTORY_DIR
settings.INV_NR_UUID_MAPPING_FILE
settings.LANGUAGE_MODEL
settings.MAX_EMPTY_SEQUENCE
settings.MAX_INVENTORY_SIZE
settings.MIN_INVENTORY_SIZE
settings.MIN_REGION_TEXT_LENGTH
settings.PAGE_EMBEDDING_OUTPUT_SIZE
settings.PAGE_EMBEDDING_RNN_CONFIG.bidirectional
settings.PAGE_EMBEDDING_RNN_CONFIG.dropout
settings.PAGE_EMBEDDING_RNN_CONFIG.hidden_size
settings.PAGE_EMBEDDING_RNN_CONFIG.num_layers
settings.PAGE_SEQUENCE_TAGGER_RNN_CONFIG.bidirectional
settings.PAGE_SEQUENCE_TAGGER_RNN_CONFIG.dropout
settings.PAGE_SEQUENCE_TAGGER_RNN_CONFIG.hidden_size
settings.PAGE_SEQUENCE_TAGGER_RNN_CONFIG.num_layers
settings.REGION_EMBEDDING_OUTPUT_SIZE
settings.REGION_TYPE_EMBEDDING_SIZE
settings.RENATE_ANALYSIS_SHEETS
settings.RENATE_TANAP_CATEGORISATION_SHEET
settings.SERVER_PASSWORD
settings.SERVER_USERNAME
settings.THUMBNAILS_DIR
3mo 23d 19h 41m 45s
Jul 05 '24 08:26
n-194-171-4-145
LEARNING_RATE=0.001
Failed
Jan 01 '70 00:00
-
-
-
-
288
CrossEntropyLoss
21.30508
["Linear(in_features=128, out_features=4, bias=True)","Linear(in_features=512, out_features=4, bias=True)","Linear(in_features=512, out_features=6, bias=True)"]
["PageEmbedding(\n (_region_model): RegionEmbedding(\n (_transformer_model): BertModel(\n (embeddings): BertEmbeddings(\n (word_embeddings): Embedding(30500, 768, padding_idx=0)\n (position_embeddings): Embedding(512, 768)\n (token_type_embeddings): Embedding(2, 768)\n (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n (encoder): BertEncoder(\n (layer): ModuleList(\n (0-11): 12 x BertLayer(\n (attention): BertAttention(\n (self): BertSelfAttention(\n (query): Linear(in_features=768, out_features=768, bias=True)\n (key): Linear(in_features=768, out_features=768, bias=True)\n (value): Linear(in_features=768, out_features=768, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n (output): BertSelfOutput(\n (dense): Linear(in_features=768, out_features=768, bias=True)\n (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n )\n (intermediate): BertIntermediate(\n (dense): Linear(in_features=768, out_features=3072, bias=True)\n (intermediate_act_fn): GELUActivation()\n )\n (output): BertOutput(\n (dense): Linear(in_features=3072, out_features=768, bias=True)\n (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n )\n )\n )\n (pooler): BertPooler(\n (dense): Linear(in_features=768, out_features=768, bias=True)\n (activation): Tanh()\n )\n )\n (_region_type): Embedding(10, 16)\n (_linear): Linear(in_features=784, out_features=128, bias=True)\n )\n (_rnn): LSTM(128, 64, num_layers=2, batch_first=True, dropout=0.1, bidirectional=True)\n (_linear): Linear(in_features=128, out_features=64, bias=True)\n)","PageEmbedding(\n (_region_model): RegionEmbedding(\n (_transformer_model): RobertaModel(\n (embeddings): RobertaEmbeddings(\n (word_embeddings): Embedding(42774, 768, padding_idx=1)\n (position_embeddings): Embedding(514, 768, padding_idx=1)\n (token_type_embeddings): Embedding(1, 768)\n (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n (encoder): RobertaEncoder(\n (layer): ModuleList(\n (0-11): 12 x RobertaLayer(\n (attention): RobertaAttention(\n (self): RobertaSelfAttention(\n (query): Linear(in_features=768, out_features=768, bias=True)\n (key): Linear(in_features=768, out_features=768, bias=True)\n (value): Linear(in_features=768, out_features=768, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n (output): RobertaSelfOutput(\n (dense): Linear(in_features=768, out_features=768, bias=True)\n (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n )\n (intermediate): RobertaIntermediate(\n (dense): Linear(in_features=768, out_features=3072, bias=True)\n (intermediate_act_fn): GELUActivation()\n )\n (output): RobertaOutput(\n (dense): Linear(in_features=3072, out_features=768, bias=True)\n (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n )\n )\n )\n (pooler): RobertaPooler(\n (dense): Linear(in_features=768, out_features=768, bias=True)\n (activation): Tanh()\n )\n )\n (_region_type): Embedding(10, 16)\n (_linear): Linear(in_features=784, out_features=128, bias=True)\n )\n (_rnn): LSTM(128, 64, num_layers=2, batch_first=True, dropout=0.1, bidirectional=True)\n (_linear): Linear(in_features=128, out_features=64, bias=True)\n)","PageEmbedding(\n (_region_model): RegionEmbedding(\n (_transformer_model): RobertaModel(\n (embeddings): RobertaEmbeddings(\n (word_embeddings): Embedding(42774, 768, padding_idx=1)\n (position_embeddings): Embedding(514, 768, padding_idx=1)\n (token_type_embeddings): Embedding(1, 768)\n (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n (encoder): RobertaEncoder(\n (layer): ModuleList(\n (0-11): 12 x RobertaLayer(\n (attention): RobertaAttention(\n (self): RobertaSelfAttention(\n (query): Linear(in_features=768, out_features=768, bias=True)\n (key): Linear(in_features=768, out_features=768, bias=True)\n (value): Linear(in_features=768, out_features=768, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n (output): RobertaSelfOutput(\n (dense): Linear(in_features=768, out_features=768, bias=True)\n (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n )\n (intermediate): RobertaIntermediate(\n (dense): Linear(in_features=768, out_features=3072, bias=True)\n (intermediate_act_fn): GELUActivation()\n )\n (output): RobertaOutput(\n (dense): Linear(in_features=3072, out_features=768, bias=True)\n (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n )\n )\n )\n (pooler): RobertaPooler(\n (dense): Linear(in_features=768, out_features=768, bias=True)\n (activation): Tanh()\n )\n )\n (_region_type): Embedding(10, 16)\n (_linear): Linear(in_features=784, out_features=512, bias=True)\n )\n (_rnn): LSTM(512, 256, num_layers=2, batch_first=True, dropout=0.1, bidirectional=True)\n (_linear): Linear(in_features=512, out_features=256, bias=True)\n)","PageEmbedding(\n (_region_model): RegionEmbedding(\n (_transformer_model): RobertaModel(\n (embeddings): RobertaEmbeddings(\n (word_embeddings): Embedding(42774, 768, padding_idx=1)\n (position_embeddings): Embedding(514, 768, padding_idx=1)\n (token_type_embeddings): Embedding(1, 768)\n (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n (encoder): RobertaEncoder(\n (layer): ModuleList(\n (0-11): 12 x RobertaLayer(\n (attention): RobertaAttention(\n (self): RobertaSelfAttention(\n (query): Linear(in_features=768, out_features=768, bias=True)\n (key): Linear(in_features=768, out_features=768, bias=True)\n (value): Linear(in_features=768, out_features=768, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n (output): RobertaSelfOutput(\n (dense): Linear(in_features=768, out_features=768, bias=True)\n (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n )\n (intermediate): RobertaIntermediate(\n (dense): Linear(in_features=768, out_features=3072, bias=True)\n (intermediate_act_fn): GELUActivation()\n )\n (output): RobertaOutput(\n (dense): Linear(in_features=3072, out_features=768, bias=True)\n (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n )\n )\n )\n (pooler): RobertaPooler(\n (dense): Linear(in_features=768, out_features=768, bias=True)\n (activation): Tanh()\n )\n )\n (_region_type): Embedding(10, 16)\n (_linear): Linear(in_features=784, out_features=512, bias=True)\n )\n (_rnn): LSTM(512, 512, num_layers=2, batch_first=True, dropout=0.1, bidirectional=True)\n (_linear): Linear(in_features=1024, out_features=256, bias=True)\n)","PageEmbedding(\n (_region_model): RegionEmbeddingSentenceTransformer(\n (_transformer_model): SentenceTransformer(\n (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel \n (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})\n )\n (_region_type): Embedding(10, 16)\n (_linear): Linear(in_features=784, out_features=128, bias=True)\n )\n (_rnn): LSTM(128, 64, num_layers=2, batch_first=True, dropout=0.1, bidirectional=True)\n (_linear): Linear(in_features=128, out_features=64, bias=True)\n)","PageEmbedding(\n (_region_model): RegionEmbeddingSentenceTransformer(\n (_transformer_model): SentenceTransformer(\n (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel \n (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})\n )\n (_region_type): Embedding(10, 16)\n (_linear): Linear(in_features=784, out_features=512, bias=True)\n )\n (_rnn): LSTM(512, 256, num_layers=2, batch_first=True, dropout=0.1, bidirectional=True)\n (_linear): Linear(in_features=512, out_features=256, bias=True)\n)","PageEmbedding(\n (_region_model): RegionEmbeddingSentenceTransformer(\n (_transformer_model): SentenceTransformer(\n (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel \n (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})\n )\n (_region_type): Embedding(10, 16)\n (_linear): Linear(in_features=784, out_features=512, bias=True)\n )\n (_rnn): LSTM(512, 512, num_layers=2, batch_first=True, dropout=0.1, bidirectional=True)\n (_linear): Linear(in_features=1024, out_features=256, bias=True)\n)","PageEmbedding(\n (_region_model): RegionEmbeddingSentenceTransformer(\n (_transformer_model): SentenceTransformer(\n (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel \n (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})\n )\n (_region_type): Embedding(9, 16)\n (_linear): Linear(in_features=784, out_features=512, bias=True)\n )\n (_rnn): LSTM(512, 256, num_layers=2, batch_first=True, dropout=0.1, bidirectional=True)\n (_linear): Linear(in_features=512, out_features=256, bias=True)\n)"]
["LSTM(256, 256, num_layers=2, batch_first=True, dropout=0.1, bidirectional=True)","LSTM(64, 64, num_layers=2, batch_first=True, dropout=0.1, bidirectional=True)"]
Softmax(dim=1)
Adam
-
/home/carstens/workspace/document_segmentation/document_segmentation
/home/carstens/workspace/document_segmentation/document_segmentation/data
["HTR/obp-v2-pagexml-leon-metadata-trimmed-2023-11/","HTR/obp-v2-pagexml-leon-metadata-trimmed-2024-03/"]
[",100",",200"]
["/home/carstens/workspace/document_segmentation/document_segmentation/data/Overzicht van Generale Missiven in 1.04.02 v.3.csv","/home/carstens/workspace/document_segmentation/document_segmentation/data/annotations/Overzicht van Generale Missiven in 1.04.02 v.3.csv"]
/home/carstens/workspace/document_segmentation/document_segmentation/data/inventories
/home/carstens/workspace/document_segmentation/document_segmentation/data/1.04.02_inventory2uuid.json
["NetherlandsForensicInstitute/robbert-2022-dutch-sentence-transformers","emanjavacas/GysBERT-v2"]
1
108.93617
1.75
20
219.23404
true
0.1
235.57447
2
true
0.1
219.23404
2
438.46809
16
["/home/carstens/workspace/document_segmentation/document_segmentation/data/annotations/Analysis Renate 1120.csv","/home/carstens/workspace/document_segmentation/document_segmentation/data/annotations/Analysis Renate 1267.csv","/home/carstens/workspace/document_segmentation/document_segmentation/data/annotations/Analysis Renate 1539.csv","/home/carstens/workspace/document_segmentation/document_segmentation/data/annotations/Analysis Renate 1547.csv","/home/carstens/workspace/document_segmentation/document_segmentation/data/annotations/Analysis Renate 1557.csv","/home/carstens/workspace/document_segmentation/document_segmentation/data/annotations/Analysis Renate 3142.csv","/home/carstens/workspace/document_segmentation/document_segmentation/data/annotations/Analysis Renate 8023.csv","/home/carstens/workspace/document_segmentation/document_segmentation/data/annotations/Analysis Renate 8121.csv","/home/carstens/workspace/document_segmentation/document_segmentation/data/annotations/Analysis Renate 8276.csv","/home/carstens/workspace/document_segmentation/document_segmentation/data/annotations/Analysis Renate 8284.csv"]
["/home/carstens/workspace/document_segmentation/document_segmentation/data/Appendix F - Spreadsheet concerning the TANAP document categorisation, Renate Smit, January 2024.xlsx","/home/carstens/workspace/document_segmentation/document_segmentation/data/annotations/Spreadsheet concerning the TANAP document categorisation (student assistant), Renate Smit.xlsx"]
********
********
/home/carstens/workspace/document_segmentation/document_segmentation/data/thumbnails
4mo 1d 2h 37m 59s
Jul 11 '24 13:36
Carstens-MacBook-Pro.local
-
Crashed
Jan 01 '70 00:00
Linear(in_features=512, out_features=4, bias=True)
PageEmbedding(
(_region_model): RegionEmbeddingSentenceTransformer(
(_transformer_model): SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
(_region_type): Embedding(9, 16)
(_linear): Linear(in_features=784, out_features=512, bias=True)
)
(_rnn): LSTM(512, 256, num_layers=2, batch_first=True, dropout=0.1, bidirectional=True)
(_linear): Linear(in_features=512, out_features=256, bias=True)
)
LSTM(256, 256, num_layers=2, batch_first=True, dropout=0.1, bidirectional=True)
Softmax(dim=1)
75.27246
CrossEntropyLoss
15.2012
["Linear(in_features=128, out_features=4, bias=True)","Linear(in_features=256, out_features=4, bias=True)","Linear(in_features=512, out_features=4, bias=True)","Linear(in_features=512, out_features=5, bias=True)","Linear(in_features=512, out_features=6, bias=True)"]
["PageEmbedding(\n (_region_model): RegionEmbedding(\n (_transformer_model): BertModel(\n (embeddings): BertEmbeddings(\n (word_embeddings): Embedding(30500, 768, padding_idx=0)\n (position_embeddings): Embedding(512, 768)\n (token_type_embeddings): Embedding(2, 768)\n (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n (encoder): BertEncoder(\n (layer): ModuleList(\n (0-11): 12 x BertLayer(\n (attention): BertAttention(\n (self): BertSdpaSelfAttention(\n (query): Linear(in_features=768, out_features=768, bias=True)\n (key): Linear(in_features=768, out_features=768, bias=True)\n (value): Linear(in_features=768, out_features=768, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n (output): BertSelfOutput(\n (dense): Linear(in_features=768, out_features=768, bias=True)\n (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n )\n (intermediate): BertIntermediate(\n (dense): Linear(in_features=768, out_features=3072, bias=True)\n (intermediate_act_fn): GELUActivation()\n )\n (output): BertOutput(\n (dense): Linear(in_features=3072, out_features=768, bias=True)\n (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n )\n )\n )\n (pooler): BertPooler(\n (dense): Linear(in_features=768, out_features=768, bias=True)\n (activation): Tanh()\n )\n )\n (_region_type): Embedding(10, 16)\n (_linear): Linear(in_features=784, out_features=128, bias=True)\n )\n (_rnn): LSTM(128, 64, num_layers=2, batch_first=True, dropout=0.1, bidirectional=True)\n (_linear): Linear(in_features=128, out_features=64, bias=True)\n)","PageEmbedding(\n (_region_model): RegionEmbedding(\n (_transformer_model): BertModel(\n (embeddings): BertEmbeddings(\n (word_embeddings): Embedding(30522, 768, padding_idx=0)\n (position_embeddings): Embedding(512, 768)\n (token_type_embeddings): Embedding(2, 768)\n (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n (encoder): BertEncoder(\n (layer): ModuleList(\n (0-11): 12 x BertLayer(\n (attention): BertAttention(\n (self): BertSdpaSelfAttention(\n (query): Linear(in_features=768, out_features=768, bias=True)\n (key): Linear(in_features=768, out_features=768, bias=True)\n (value): Linear(in_features=768, out_features=768, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n (output): BertSelfOutput(\n (dense): Linear(in_features=768, out_features=768, bias=True)\n (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n )\n (intermediate): BertIntermediate(\n (dense): Linear(in_features=768, out_features=3072, bias=True)\n (intermediate_act_fn): GELUActivation()\n )\n (output): BertOutput(\n (dense): Linear(in_features=3072, out_features=768, bias=True)\n (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n )\n )\n )\n (pooler): BertPooler(\n (dense): Linear(in_features=768, out_features=768, bias=True)\n (activation): Tanh()\n )\n )\n (_region_type): Embedding(10, 16)\n (_linear): Linear(in_features=784, out_features=128, bias=True)\n )\n (_rnn): LSTM(128, 64, num_layers=2, batch_first=True, dropout=0.1, bidirectional=True)\n (_linear): Linear(in_features=128, out_features=64, bias=True)\n)","PageEmbedding(\n (_region_model): RegionEmbeddingSentenceTransformer(\n (_transformer_model): SentenceTransformer(\n (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel \n (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})\n )\n (_region_type): Embedding(10, 16)\n (_linear): Linear(in_features=784, out_features=128, bias=True)\n )\n (_rnn): LSTM(128, 128, num_layers=2, batch_first=True, dropout=0.1, bidirectional=True)\n (_linear): Linear(in_features=256, out_features=128, bias=True)\n)","PageEmbedding(\n (_region_model): RegionEmbeddingSentenceTransformer(\n (_transformer_model): SentenceTransformer(\n (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel \n (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})\n )\n (_region_type): Embedding(10, 16)\n (_linear): Linear(in_features=784, out_features=128, bias=True)\n )\n (_rnn): LSTM(128, 64, num_layers=2, batch_first=True, dropout=0.1, bidirectional=True)\n (_linear): Linear(in_features=128, out_features=64, bias=True)\n)","PageEmbedding(\n (_region_model): RegionEmbeddingSentenceTransformer(\n (_transformer_model): SentenceTransformer(\n (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel \n (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})\n )\n (_region_type): Embedding(10, 16)\n (_linear): Linear(in_features=784, out_features=512, bias=True)\n )\n (_rnn): LSTM(512, 256, num_layers=2, batch_first=True, dropout=0.1, bidirectional=True)\n (_linear): Linear(in_features=512, out_features=256, bias=True)\n)","PageEmbedding(\n (_region_model): RegionEmbeddingSentenceTransformer(\n (_transformer_model): SentenceTransformer(\n (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel \n (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})\n )\n (_region_type): Embedding(9, 16)\n (_linear): Linear(in_features=784, out_features=512, bias=True)\n )\n (_rnn): LSTM(512, 256, num_layers=2, batch_first=True, dropout=0.1, bidirectional=True)\n (_linear): Linear(in_features=512, out_features=256, bias=True)\n)"]
["LSTM(128, 128, num_layers=2, batch_first=True, dropout=0.1, bidirectional=True)","LSTM(256, 256, num_layers=2, batch_first=True, dropout=0.1, bidirectional=True)","LSTM(64, 64, num_layers=2, batch_first=True, dropout=0.1, bidirectional=True)"]
Softmax(dim=1)
Adam
-
/Users/carstenschnober/LAHTeR/workspace/document-segmentation/document_segmentation
/Users/carstenschnober/LAHTeR/workspace/document-segmentation/document_segmentation/data
["HTR/obp-v2-pagexml-leon-metadata-trimmed-2023-11/","HTR/obp-v2-pagexml-leon-metadata-trimmed-2024-03/"]
[",100",",200"]
["/Users/carstenschnober/LAHTeR/workspace/document-segmentation/document_segmentation/data/Overzicht van Generale Missiven in 1.04.02 v.3.csv","/Users/carstenschnober/LAHTeR/workspace/document-segmentation/document_segmentation/data/annotations/Overzicht van Generale Missiven in 1.04.02 v.3.csv"]
/Users/carstenschnober/LAHTeR/workspace/document-segmentation/document_segmentation/data/inventories
/Users/carstenschnober/LAHTeR/workspace/document-segmentation/document_segmentation/data/1.04.02_inventory2uuid.json
["NetherlandsForensicInstitute/robbert-2022-dutch-sentence-transformers","emanjavacas/GysBERT","emanjavacas/GysBERT-v2"]
1
149.85366
1.26667
21.95122
219.05691
true
0.1
219.05691
2
true
0.1
219.05691
2
437.07317
16
["/Users/carstenschnober/LAHTeR/workspace/document-segmentation/document_segmentation/data/annotations/Analysis Renate 1120.csv","/Users/carstenschnober/LAHTeR/workspace/document-segmentation/document_segmentation/data/annotations/Analysis Renate 1547.csv","/Users/carstenschnober/LAHTeR/workspace/document-segmentation/document_segmentation/data/annotations/Analysis Renate 1557.csv","/Users/carstenschnober/LAHTeR/workspace/document-segmentation/document_segmentation/data/annotations/Analysis Renate 2448.csv","/Users/carstenschnober/LAHTeR/workspace/document-segmentation/document_segmentation/data/annotations/Analysis Renate 2775.csv","/Users/carstenschnober/LAHTeR/workspace/document-segmentation/document_segmentation/data/annotations/Analysis Renate 3142.csv","/Users/carstenschnober/LAHTeR/workspace/document-segmentation/document_segmentation/data/annotations/Analysis Renate 7923.csv","/Users/carstenschnober/LAHTeR/workspace/document-segmentation/document_segmentation/data/annotations/Analysis Renate 8237.csv","/Users/carstenschnober/LAHTeR/workspace/document-segmentation/document_segmentation/data/annotations/Analysis Renate 8276.csv","/Users/carstenschnober/LAHTeR/workspace/document-segmentation/document_segmentation/data/annotations/Analysis Renate 8834.csv"]
["/Users/carstenschnober/LAHTeR/workspace/document-segmentation/document_segmentation/data/Appendix F - Spreadsheet concerning the TANAP document categorisation, Renate Smit, January 2024.xlsx","/Users/carstenschnober/LAHTeR/workspace/document-segmentation/document_segmentation/data/Spreadsheet concerning the TANAP document categorisation (student assistant), Renate Smit.xlsx","/Users/carstenschnober/LAHTeR/workspace/document-segmentation/document_segmentation/data/annotations/Spreadsheet concerning the TANAP document categorisation (student assistant), Renate Smit.xlsx"]
********
********
/Users/carstenschnober/LAHTeR/workspace/document-segmentation/document_segmentation/data/thumbnails
6d 3h 13m 49s
Apr 08 '24 13:24
globalise-Stealth-GS66-12UHS
-
Failed
Jan 01 '70 00:00
-
-
-
-
-
CrossEntropyLoss
3
["Linear(in_features=512, out_features=5, bias=True)","Linear(in_features=512, out_features=6, bias=True)"]
PageEmbedding(
(_region_model): RegionEmbeddingSentenceTransformer(
(_transformer_model): SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
(_region_type): Embedding(10, 16)
(_linear): Linear(in_features=784, out_features=512, bias=True)
)
(_rnn): LSTM(512, 256, num_layers=2, batch_first=True, dropout=0.1, bidirectional=True)
(_linear): Linear(in_features=512, out_features=256, bias=True)
)
LSTM(256, 256, num_layers=2, batch_first=True, dropout=0.1, bidirectional=True)
Softmax(dim=1)
Adam
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1-3
of 3