Skip to main content
charlesfrye
Projects
uncategorized
Reports
LaTeX Fiddles
Log in
Sign up
Share
Comment
Star
LaTeX Fiddles
Charles Frye
Created on February 11
|
Last edited on February 11
Comment
Underbraces
The layerwise gradients of a deep linear neural network have the following form:
∇
W
k
l
⏟
grad w.r.t. layer
k
(
W
1
,
…
,
W
D
)
=
W
k
+
1
:
⊤
⏟
later weights, adjoint
∇
L
(
W
)
⏟
collapsed loss
W
:
k
⏟
earlier weights
\underbrace{\nabla{_{W_k}}l}_\text{grad w.r.t. layer \textit{k}}\left(W_1, \dots, W_D\right) = \underbrace{W_{k+1:}^\top}_ \text{later weights, adjoint} \ \ \ \underbrace{\nabla \mathcal{L}\left(W\right)} _\text{collapsed loss} \ \ \ \underbrace{W_{:k}}_\text{earlier weights}
grad w.r.t. layer
k
∇
W
k
l
(
W
1
,
…
,
W
D
)
=
later weights, adjoint
W
k
+
1
:
⊤
collapsed loss
∇
L
(
W
)
earlier weights
W
:
k
Add a comment