Skip to main content

My Report

Created on December 1|Last edited on December 1

Section 1

My findings.
/

Expand 38 lines ...
39
39
   
40
40
  # log semantic segmentation in the new style
41
41
  def on_epoch_end(self, **kwargs):
42
-
    num_log = 
5
42
+
    num_log = 
6
43
43
    input_batch = self.learn.data.valid_ds[:num_log]
44
44
    mask_list = []
45
45
    for i, img in enumerate(input_batch):
Expand 75 lines ...
121
121
config.img_size = (360, 640)    # dimensions of resized image - can be 1 dim or tuple
122
122
123
-
config.batch_size = 
8
           # Batch size during training
123
+
config.batch_size = 
6
           # Batch size during training
124
124
config.epochs = 10            # Number of epochs for training
125
125
126
-
config.encoder = "resnet
18
" #resnet34"
126
+
config.encoder = "resnet
34
" #resnet34"
127
127
if config.encoder == "resnet18":
128
128
  encoder = models.resnet18     # encoder of unet (contracting path)
129
129
elif config.encoder == "resnet34":
130
130
  encoder = models.resnet34
131
131
elif config.encoder == "squeezenet1_0":
Expand 13 lines ...
145
-
config.weight_decay = 0.0
9
7
 #0.097     # weight decay applied on layers
145
+
config.weight_decay = 0.0
81
7
3
 #0.097     # weight decay applied on layers
146
146
config.bn_weight_decay = True # whether weight decay is applied on batch norm layers
147
147
config.one_cycle = True         # use the "1cycle" policy -> https://arxiv.org/abs/1803.09820
148
148
# SWEEPS UNCOMMENT
149
-
config.learning_rate = 0.001
 #09084 #0.001     # learning rate
149
+
config.learning_rate = 0.001
311
 #09084 #0.001     # learning rate
150
150
save_model = False
151
151
152
152
# Custom values to filter runs
153
153
# SWEEPS UNCOMMENT
154
-
config.training_stages = 
2
154
+
config.training_stages = 
3
155
155
156
156
# Data paths
157
157
path_data = Path('../../../../BigData/bdd100K/bdd100k/seg')
158
158
path_lbl = path_data / 'labels'
159
159
path_img = path_data / 'images'
160
160
161
161
# Associate a label to an input
162
162
get_y_fn = lambda x: path_lbl / x.parts[-2] / f'{x.stem}_train_id.png'
Expand 146 lines ...
Showing first 50 runs
051015Step0.50.60.70.8
2.02.53.03.54.04.55.05.56.06.57.07.58.0bat...0.0000.0010.0020.0030.0040.0050.0060.0070.0080.0090.0100.0110.012lea...0.000.010.020.030.040.050.060.070.080.090.10wei...alexnetresnet18resnet34enc...null0.300.350.400.450.500.550.600.650.700.750.800.850.90acc
Run set
328



Run set
328