Skip to main content

Capecape's group workspace

timm

What makes this group special?
Tags

silver-sweep-69

Notes
Author
State
Finished
Start time
June 11th, 2022 1:37:19 AM
Runtime
14m 55s
Tracked hours
4m 51s
Run path
fastai/fine_tune_timm/blgqshla
OS
Linux-5.13.0-48-generic-x86_64-with-glibc2.31
Python version
3.9.10
Git repository
git clone git@github.com:tcapelle/fastai_timm.git
Git state
git checkout -b "silver-sweep-69" 2170e4ac850f79922b54a886c5595636823795af
Command
/home/jhoward/git/ext/fastai_timm/fine_tune.py --dataset=PETS --learning_rate=0.008 --model_name=regnetz_e8 --num_experiments=3 --pool=concat --resize_method=squish
System Hardware
CPU count64
GPU count3
GPU typeNVIDIA GeForce RTX 3090
W&B CLI Version
0.12.17
Group
timm
Config

Config parameters are your model's inputs. Learn more

  • {} 35 keys
    • 184
    • 32
    • 32
    • "PETS"
    • "[Pipeline: PILBase.create, Pipeline: partial -> Categorize -- {'vocab': None, 'sort': True, 'add_na': False}]"
    • "cuda"
    • "Pipeline: IntToFloatTensor -- {'div': 255.0, 'div_mask': 1}"
    • "Pipeline: Resize -- {'size': (224, 224), 'method': 'squish', 'pad_mode': 'reflection', 'resamples': (<Resampling.BILINEAR: 2>, 0), 'p': 1.0} -> ToTensor"
    • "Pipeline: "
    • 5
    • false
    • 0
    • 224
    • 32
    • 3
    • 224
    • 224
    • {} 16 keys
      • 0.008
      • true
      • 57,774,488
      • "regnetz_e8"
      • 1
      • 3
      • true
      • "concat"
      • true
      • {} 3 keys
        • true
        • false
        • true
      • "squish"
      • 42
      • "default"
      • true
      • "capecape"
      • "fine_tune_timm"
      • {} 11 keys
      Summary

      Summary metrics are your model's outputs. Learn more

      • {} 20 keys
        • 0.925575077533722
        • 6
        • 0.00001
        • 0.00001
        • 0.07442490011453629
        • 283.6589052710042
        • 8.341796875
        • 0.00000000063795977363
        • 0.00000006379597736281
        • "regnetz"
        • 0.9499994050946168
        • 0.9499994050946168
        • 0.0037908940576016903
        • 0.99
        • 0.99
        • 0.057738788425922394
        • 136.6662046636687
        • 0.2867913842201233
        • 0.01
        • 0.01
      Artifact Outputs

      This run produced these artifacts as outputs. Total: 1. Learn more

      Loading...