Skip to main content

Clashluke's group workspace

Timestamps visible
2023-05-07 16:32:30
[  521/65536] Loss:  3.456 - Accuracy:    0.171 | LearningRate: 0.00051 | StepTime:   6.913337s - Rate:   4,481.2 Tokens/s
2023-05-07 16:32:38
[  522/65536] Loss:  3.446 - Accuracy:    0.162 | LearningRate: 0.00051 | StepTime:   6.906572s - Rate:   4,481.6 Tokens/s
2023-05-07 16:32:44
[  523/65536] Loss:  3.448 - Accuracy:    0.160 | LearningRate: 0.00051 | StepTime:   6.907716s - Rate:   4,482.1 Tokens/s
2023-05-07 16:32:52
[  524/65536] Loss:  3.410 - Accuracy:    0.162 | LearningRate: 0.00051 | StepTime:   6.906541s - Rate:   4,482.6 Tokens/s
2023-05-07 16:32:58
[  525/65536] Loss:  3.407 - Accuracy:    0.166 | LearningRate: 0.00051 | StepTime:   6.904020s - Rate:   4,483.0 Tokens/s
2023-05-07 16:33:06
[  526/65536] Loss:  3.469 - Accuracy:    0.161 | LearningRate: 0.00051 | StepTime:   6.899176s - Rate:   4,483.5 Tokens/s
2023-05-07 16:33:12
[  527/65536] Loss:  3.401 - Accuracy:    0.168 | LearningRate: 0.00051 | StepTime:   6.899937s - Rate:   4,483.9 Tokens/s
2023-05-07 16:33:18
[  528/65536] Loss:  3.426 - Accuracy:    0.177 | LearningRate: 0.00051 | StepTime:   6.901861s - Rate:   4,484.4 Tokens/s
2023-05-07 16:33:26
[  529/65536] Loss:  3.505 - Accuracy:    0.162 | LearningRate: 0.00051 | StepTime:   6.903952s - Rate:   4,484.8 Tokens/s
2023-05-07 16:33:32
[  530/65536] Loss:  3.436 - Accuracy:    0.167 | LearningRate: 0.00052 | StepTime:   6.908934s - Rate:   4,485.3 Tokens/s
2023-05-07 16:33:40
[  531/65536] Loss:  3.441 - Accuracy:    0.173 | LearningRate: 0.00052 | StepTime:   6.902022s - Rate:   4,485.7 Tokens/s
2023-05-07 16:33:46
[  532/65536] Loss:  3.502 - Accuracy:    0.168 | LearningRate: 0.00052 | StepTime:   6.907601s - Rate:   4,486.1 Tokens/s
2023-05-07 16:33:54
[  533/65536] Loss:  3.458 - Accuracy:    0.168 | LearningRate: 0.00052 | StepTime:   6.902901s - Rate:   4,486.6 Tokens/s
2023-05-07 16:34:00
[  534/65536] Loss:  3.410 - Accuracy:    0.173 | LearningRate: 0.00052 | StepTime:   6.905594s - Rate:   4,487.0 Tokens/s
2023-05-07 16:34:08
[  535/65536] Loss:  3.481 - Accuracy:    0.164 | LearningRate: 0.00052 | StepTime:   6.902677s - Rate:   4,487.5 Tokens/s
2023-05-07 16:34:14
[  536/65536] Loss:  3.524 - Accuracy:    0.163 | LearningRate: 0.00052 | StepTime:   6.904244s - Rate:   4,487.9 Tokens/s
2023-05-07 16:34:22
[  537/65536] Loss:  3.462 - Accuracy:    0.166 | LearningRate: 0.00052 | StepTime:   6.904070s - Rate:   4,488.3 Tokens/s
2023-05-07 16:34:28
[  538/65536] Loss:  3.458 - Accuracy:    0.164 | LearningRate: 0.00052 | StepTime:   6.905093s - Rate:   4,488.8 Tokens/s
2023-05-07 16:34:34
[  539/65536] Loss:  3.498 - Accuracy:    0.162 | LearningRate: 0.00052 | StepTime:   6.902910s - Rate:   4,489.2 Tokens/s
2023-05-07 16:34:42
[  540/65536] Loss:  3.447 - Accuracy:    0.165 | LearningRate: 0.00053 | StepTime:   6.905584s - Rate:   4,489.6 Tokens/s
2023-05-07 16:34:48
[  541/65536] Loss:  3.485 - Accuracy:    0.154 | LearningRate: 0.00053 | StepTime:   6.907894s - Rate:   4,490.1 Tokens/s
2023-05-07 16:34:56
[  542/65536] Loss:  3.500 - Accuracy:    0.169 | LearningRate: 0.00053 | StepTime:   6.904533s - Rate:   4,490.5 Tokens/s
2023-05-07 16:35:02
[  543/65536] Loss:  3.540 - Accuracy:    0.163 | LearningRate: 0.00053 | StepTime:   6.901006s - Rate:   4,490.9 Tokens/s
2023-05-07 16:35:10
[  544/65536] Loss:  3.432 - Accuracy:    0.158 | LearningRate: 0.00053 | StepTime:   6.903087s - Rate:   4,491.4 Tokens/s
2023-05-07 16:35:16
[  545/65536] Loss:  3.434 - Accuracy:    0.169 | LearningRate: 0.00053 | StepTime:   6.899298s - Rate:   4,491.8 Tokens/s
2023-05-07 16:35:24
[  546/65536] Loss:  3.458 - Accuracy:    0.175 | LearningRate: 0.00053 | StepTime:   6.897640s - Rate:   4,492.2 Tokens/s
2023-05-07 16:35:30
[  547/65536] Loss:  3.481 - Accuracy:    0.165 | LearningRate: 0.00053 | StepTime:   6.909202s - Rate:   4,492.6 Tokens/s
2023-05-07 16:35:38
[  548/65536] Loss:  3.465 - Accuracy:    0.163 | LearningRate: 0.00053 | StepTime:   6.907993s - Rate:   4,493.0 Tokens/s
2023-05-07 16:35:44
[  549/65536] Loss:  3.459 - Accuracy:    0.165 | LearningRate: 0.00053 | StepTime:   6.906164s - Rate:   4,493.5 Tokens/s
2023-05-07 16:35:50
[  550/65536] Loss:  3.424 - Accuracy:    0.159 | LearningRate: 0.00054 | StepTime:   6.903120s - Rate:   4,493.9 Tokens/s
2023-05-07 16:35:58
[  551/65536] Loss:  3.431 - Accuracy:    0.174 | LearningRate: 0.00054 | StepTime:   6.909187s - Rate:   4,494.3 Tokens/s
2023-05-07 16:36:04
[  552/65536] Loss:  3.463 - Accuracy:    0.165 | LearningRate: 0.00054 | StepTime:   6.909879s - Rate:   4,494.7 Tokens/s
2023-05-07 16:36:12
[  553/65536] Loss:  3.473 - Accuracy:    0.165 | LearningRate: 0.00054 | StepTime:   6.909453s - Rate:   4,495.1 Tokens/s
2023-05-07 16:36:18
[  554/65536] Loss:  3.459 - Accuracy:    0.174 | LearningRate: 0.00054 | StepTime:   6.910047s - Rate:   4,495.5 Tokens/s
2023-05-07 16:36:26
[  555/65536] Loss:  3.429 - Accuracy:    0.172 | LearningRate: 0.00054 | StepTime:   6.906104s - Rate:   4,495.9 Tokens/s
2023-05-07 16:36:32
[  556/65536] Loss:  3.454 - Accuracy:    0.178 | LearningRate: 0.00054 | StepTime:   6.907190s - Rate:   4,496.3 Tokens/s
2023-05-07 16:36:40
[  557/65536] Loss:  3.480 - Accuracy:    0.163 | LearningRate: 0.00054 | StepTime:   6.900307s - Rate:   4,496.7 Tokens/s
2023-05-07 16:36:46
[  558/65536] Loss:  3.387 - Accuracy:    0.173 | LearningRate: 0.00054 | StepTime:   6.903515s - Rate:   4,497.1 Tokens/s
2023-05-07 16:36:54
[  559/65536] Loss:  3.521 - Accuracy:    0.162 | LearningRate: 0.00054 | StepTime:   6.908235s - Rate:   4,497.5 Tokens/s
2023-05-07 16:37:00
[  560/65536] Loss:  3.494 - Accuracy:    0.170 | LearningRate: 0.00054 | StepTime:   6.903072s - Rate:   4,497.9 Tokens/s
2023-05-07 16:37:08
[  561/65536] Loss:  3.453 - Accuracy:    0.161 | LearningRate: 0.00055 | StepTime:   6.899731s - Rate:   4,498.3 Tokens/s
2023-05-07 16:37:14
[  562/65536] Loss:  3.442 - Accuracy:    0.160 | LearningRate: 0.00055 | StepTime:   6.900900s - Rate:   4,498.7 Tokens/s
2023-05-07 16:37:20
[  563/65536] Loss:  3.418 - Accuracy:    0.166 | LearningRate: 0.00055 | StepTime:   6.900497s - Rate:   4,499.1 Tokens/s
2023-05-07 16:37:29
[  564/65536] Loss:  3.434 - Accuracy:    0.168 | LearningRate: 0.00055 | StepTime:   6.900371s - Rate:   4,499.5 Tokens/s
2023-05-07 16:37:35
[  565/65536] Loss:  3.518 - Accuracy:    0.172 | LearningRate: 0.00055 | StepTime:   6.900555s - Rate:   4,499.9 Tokens/s
2023-05-07 16:37:43
[  566/65536] Loss:  3.502 - Accuracy:    0.159 | LearningRate: 0.00055 | StepTime:   6.897146s - Rate:   4,500.4 Tokens/s
2023-05-07 16:37:49
[  567/65536] Loss:  3.445 - Accuracy:    0.177 | LearningRate: 0.00055 | StepTime:   6.899368s - Rate:   4,500.8 Tokens/s
2023-05-07 16:37:57
[  568/65536] Loss:  3.438 - Accuracy:    0.163 | LearningRate: 0.00055 | StepTime:   6.900427s - Rate:   4,501.1 Tokens/s
2023-05-07 16:38:03
[  569/65536] Loss:  3.523 - Accuracy:    0.152 | LearningRate: 0.00055 | StepTime:   6.908627s - Rate:   4,501.5 Tokens/s
2023-05-07 16:38:11
[  570/65536] Loss:  3.541 - Accuracy:    0.157 | LearningRate: 0.00055 | StepTime:   6.904158s - Rate:   4,501.9 Tokens/s
2023-05-07 16:38:17
[  571/65536] Loss:  3.389 - Accuracy:    0.164 | LearningRate: 0.00056 | StepTime:   6.897150s - Rate:   4,502.3 Tokens/s
2023-05-07 16:38:23
[  572/65536] Loss:  3.393 - Accuracy:    0.170 | LearningRate: 0.00056 | StepTime:   6.900385s - Rate:   4,502.7 Tokens/s
2023-05-07 16:38:31
[  573/65536] Loss:  3.443 - Accuracy:    0.165 | LearningRate: 0.00056 | StepTime:   6.900357s - Rate:   4,503.1 Tokens/s
2023-05-07 16:38:37
[  574/65536] Loss:  3.418 - Accuracy:    0.177 | LearningRate: 0.00056 | StepTime:   6.900797s - Rate:   4,503.5 Tokens/s
2023-05-07 16:38:45
[  575/65536] Loss:  3.463 - Accuracy:    0.167 | LearningRate: 0.00056 | StepTime:   6.904958s - Rate:   4,503.9 Tokens/s
2023-05-07 16:38:51
[  576/65536] Loss:  3.510 - Accuracy:    0.170 | LearningRate: 0.00056 | StepTime:   6.908356s - Rate:   4,504.2 Tokens/s