Skip to main content

Kimsehun725's group workspace

Timestamps visible
2022-10-14 12:08:51
Epoch 6:  89%|█████████████████████████████████████████████████████████▊       | 8/9 [00:04<00:00,  1.63it/s, loss=0.107, v_num=7dmz, val/loss=0.0846, val/precision=nan.0, val/recall=0.000, val/f1=nan.0, train/loss=0.108]
2022-10-14 12:09:01
Epoch 7:  89%|█████████████████████████████████████████████████████████▊       | 8/9 [00:05<00:00,  1.48it/s, loss=0.103, v_num=7dmz, val/loss=0.0816, val/precision=nan.0, val/recall=0.000, val/f1=nan.0, train/loss=0.101]
2022-10-14 12:09:13
Epoch 8:  89%|███████████████████████████████████████████████████████       | 8/9 [00:04<00:00,  1.64it/s, loss=0.0961, v_num=7dmz, val/loss=0.0783, val/precision=0.293, val/recall=0.0134, val/f1=0.0256, train/loss=0.098]
2022-10-14 12:09:23
Epoch 9:  89%|████████████████████████████████████████████████████████▉       | 8/9 [00:04<00:00,  1.66it/s, loss=0.092, v_num=7dmz, val/loss=0.0752, val/precision=0.540, val/recall=0.017, val/f1=0.033, train/loss=0.0936]
2022-10-14 12:09:35
Epoch 10:  89%|█████████████████████████████████████████████████████▎      | 8/9 [00:04<00:00,  1.66it/s, loss=0.0897, v_num=7dmz, val/loss=0.0718, val/precision=0.503, val/recall=0.0324, val/f1=0.0608, train/loss=0.0883]
2022-10-14 12:09:46
Epoch 11:  89%|██████████████████████████████████████████████████████▏      | 8/9 [00:04<00:00,  1.61it/s, loss=0.0865, v_num=7dmz, val/loss=0.0698, val/precision=0.441, val/recall=0.0952, val/f1=0.157, train/loss=0.0871]
2022-10-14 12:09:58
Epoch 12:  89%|███████████████████████████████████████████████████████       | 8/9 [00:04<00:00,  1.65it/s, loss=0.0827, v_num=7dmz, val/loss=0.0681, val/precision=0.498, val/recall=0.141, val/f1=0.219, train/loss=0.0845]
2022-10-14 12:10:08
Epoch 13:  89%|███████████████████████████████████████████████████████       | 8/9 [00:04<00:00,  1.65it/s, loss=0.0806, v_num=7dmz, val/loss=0.0748, val/precision=0.406, val/recall=0.248, val/f1=0.308, train/loss=0.0788]
2022-10-14 12:10:20
Epoch 14:  89%|███████████████████████████████████████████████████████       | 8/9 [00:04<00:00,  1.65it/s, loss=0.0781, v_num=7dmz, val/loss=0.0842, val/precision=0.363, val/recall=0.318, val/f1=0.339, train/loss=0.0789]
2022-10-14 12:10:30
Epoch 15:  89%|███████████████████████████████████████████████████████       | 8/9 [00:04<00:00,  1.60it/s, loss=0.0755, v_num=7dmz, val/loss=0.0605, val/precision=0.574, val/recall=0.273, val/f1=0.370, train/loss=0.0767]
2022-10-14 12:10:42
Epoch 16:  89%|████████████████████████████████████████████████████████       | 8/9 [00:05<00:00,  1.55it/s, loss=0.0741, v_num=7dmz, val/loss=0.0577, val/precision=0.611, val/recall=0.277, val/f1=0.381, train/loss=0.073]
2022-10-14 12:10:52
Epoch 17:  89%|███████████████████████████████████████████████████████       | 8/9 [00:04<00:00,  1.69it/s, loss=0.0711, v_num=7dmz, val/loss=0.0609, val/precision=0.548, val/recall=0.398, val/f1=0.461, train/loss=0.0713]
2022-10-14 12:11:04
Epoch 18:  89%|████████████████████████████████████████████████████████       | 8/9 [00:04<00:00,  1.63it/s, loss=0.0671, v_num=7dmz, val/loss=0.056, val/precision=0.642, val/recall=0.330, val/f1=0.436, train/loss=0.0686]
2022-10-14 12:11:16
Epoch 19:  89%|███████████████████████████████████████████████████████       | 8/9 [00:04<00:00,  1.65it/s, loss=0.0651, v_num=7dmz, val/loss=0.0557, val/precision=0.604, val/recall=0.405, val/f1=0.484, train/loss=0.0664]
2022-10-14 12:11:28
Epoch 20:  89%|███████████████████████████████████████████████████████       | 8/9 [00:05<00:00,  1.59it/s, loss=0.0631, v_num=7dmz, val/loss=0.0554, val/precision=0.580, val/recall=0.474, val/f1=0.522, train/loss=0.0648]
2022-10-14 12:11:38
Epoch 21:  89%|███████████████████████████████████████████████████████       | 8/9 [00:04<00:00,  1.64it/s, loss=0.0628, v_num=7dmz, val/loss=0.0778, val/precision=0.426, val/recall=0.599, val/f1=0.498, train/loss=0.0633]
2022-10-14 12:11:50
Epoch 22:  89%|███████████████████████████████████████████████████████       | 8/9 [00:04<00:00,  1.64it/s, loss=0.0614, v_num=7dmz, val/loss=0.0568, val/precision=0.566, val/recall=0.551, val/f1=0.558, train/loss=0.0622]
2022-10-14 12:12:12
Epoch 24:  89%|███████████████████████████████████████████████████████       | 8/9 [00:04<00:00,  1.60it/s, loss=0.0581, v_num=7dmz, val/loss=0.0529, val/precision=0.584, val/recall=0.558, val/f1=0.571, train/loss=0.0608]
2022-10-14 12:12:02
Validation: 0it [00:00, ?it/s]
2022-10-14 12:12:24
Epoch 25:  89%|███████████████████████████████████████████████████████       | 8/9 [00:04<00:00,  1.62it/s, loss=0.0573, v_num=7dmz, val/loss=0.0578, val/precision=0.530, val/recall=0.603, val/f1=0.564, train/loss=0.0579]
2022-10-14 12:12:34
Epoch 26:  89%|███████████████████████████████████████████████████████       | 8/9 [00:04<00:00,  1.64it/s, loss=0.0572, v_num=7dmz, val/loss=0.0511, val/precision=0.580, val/recall=0.572, val/f1=0.576, train/loss=0.0559]
2022-10-14 12:12:46
Epoch 27:  89%|███████████████████████████████████████████████████████       | 8/9 [00:04<00:00,  1.61it/s, loss=0.0563, v_num=7dmz, val/loss=0.0561, val/precision=0.516, val/recall=0.608, val/f1=0.558, train/loss=0.0565]
2022-10-14 12:13:08
Epoch 29:  89%|███████████████████████████████████████████████████████       | 8/9 [00:04<00:00,  1.65it/s, loss=0.0542, v_num=7dmz, val/loss=0.0503, val/precision=0.567, val/recall=0.615, val/f1=0.590, train/loss=0.0532]
2022-10-14 12:12:58
Validation: 0it [00:00, ?it/s]
2022-10-14 12:13:20
Epoch 30:  89%|███████████████████████████████████████████████████████       | 8/9 [00:04<00:00,  1.63it/s, loss=0.0524, v_num=7dmz, val/loss=0.0465, val/precision=0.624, val/recall=0.637, val/f1=0.630, train/loss=0.0524]
2022-10-14 12:13:30
Epoch 31:  89%|████████████████████████████████████████████████████████       | 8/9 [00:04<00:00,  1.64it/s, loss=0.0516, v_num=7dmz, val/loss=0.0442, val/precision=0.652, val/recall=0.564, val/f1=0.605, train/loss=0.052]
2022-10-14 12:13:42
Epoch 32:  89%|███████████████████████████████████████████████████████       | 8/9 [00:04<00:00,  1.71it/s, loss=0.0508, v_num=7dmz, val/loss=0.0476, val/precision=0.591, val/recall=0.640, val/f1=0.614, train/loss=0.0526]
2022-10-14 12:14:04
Epoch 34:  89%|████████████████████████████████████████████████████████       | 8/9 [00:04<00:00,  1.63it/s, loss=0.049, v_num=7dmz, val/loss=0.0427, val/precision=0.617, val/recall=0.671, val/f1=0.642, train/loss=0.0497]
2022-10-14 12:13:54
Validation: 0it [00:00, ?it/s]
2022-10-14 12:14:16
Epoch 35:  89%|████████████████████████████████████████████████████████▉       | 8/9 [00:04<00:00,  1.64it/s, loss=0.05, v_num=7dmz, val/loss=0.0391, val/precision=0.683, val/recall=0.635, val/f1=0.658, train/loss=0.0501]
2022-10-14 12:14:26
Epoch 36:  89%|████████████████████████████████████████████████████████       | 8/9 [00:04<00:00,  1.66it/s, loss=0.0509, v_num=7dmz, val/loss=0.0377, val/precision=0.713, val/recall=0.610, val/f1=0.657, train/loss=0.050]
2022-10-14 12:14:38
Epoch 37:  89%|███████████████████████████████████████████████████████       | 8/9 [00:05<00:00,  1.58it/s, loss=0.0508, v_num=7dmz, val/loss=0.0391, val/precision=0.678, val/recall=0.640, val/f1=0.658, train/loss=0.0502]
2022-10-14 12:14:48
Epoch 38:  89%|███████████████████████████████████████████████████████       | 8/9 [00:04<00:00,  1.65it/s, loss=0.0507, v_num=7dmz, val/loss=0.0384, val/precision=0.683, val/recall=0.672, val/f1=0.677, train/loss=0.0494]
2022-10-14 12:15:00
Epoch 39:  89%|███████████████████████████████████████████████████████       | 8/9 [00:04<00:00,  1.65it/s, loss=0.0499, v_num=7dmz, val/loss=0.0395, val/precision=0.667, val/recall=0.650, val/f1=0.658, train/loss=0.0491]
2022-10-14 12:15:10
Epoch 40:  89%|████████████████████████████████████████████████████████▉       | 8/9 [00:04<00:00,  1.63it/s, loss=0.05, v_num=7dmz, val/loss=0.0392, val/precision=0.661, val/recall=0.619, val/f1=0.639, train/loss=0.0492]
2022-10-14 12:15:22
Epoch 41:  89%|███████████████████████████████████████████████████████       | 8/9 [00:04<00:00,  1.70it/s, loss=0.0506, v_num=7dmz, val/loss=0.0368, val/precision=0.722, val/recall=0.624, val/f1=0.669, train/loss=0.0493]
2022-10-14 12:15:22
Validation: 0it [00:00, ?it/s]
2022-10-14 12:15:25
Exception ignored in: <function _releaseLock at 0x2abc035f31f0>
2022-10-14 12:15:25
Traceback (most recent call last):
2022-10-14 12:15:25
  File "/usr/lib/python3.8/logging/__init__.py", line 227, in _releaseLock
2022-10-14 12:15:25
    def _releaseLock():
2022-10-14 12:15:25
KeyboardInterrupt:
2022-10-14 12:15:25
/data/group1/z44543r/vae_separation/venv/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py:653: UserWarning: Detected KeyboardInterrupt, attempting graceful shutdown...
2022-10-14 12:15:25
  rank_zero_warn("Detected KeyboardInterrupt, attempting graceful shutdown...")
2022-10-14 12:15:25
Restoring states from the checkpoint path at /data/group1/z44543r/vae_separation/trained_model/20221014_2030/test01/epoch=31.ckpt
2022-10-14 12:15:25
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1,2,3]
2022-10-14 12:15:25
Loaded model weights from checkpoint at /data/group1/z44543r/vae_separation/trained_model/20221014_2030/test01/epoch=31.ckpt