Skip to main content

Kimsehun725's group workspace

Timestamps visible
2022-10-20 10:29:00
Epoch 161:  89%|████████████████████████████████████████████▍     | 16/18 [00:05<00:00,  3.07it/s, loss=0.0232, v_num=xc2k, val/loss=0.017, val/precision=0.868, val/recall=0.906, val/f1=0.887, val/tdr=0.995, val/sa_precision=0.887, val/sa_recall=0.925, val/sa_f1=0.905, train/loss=0.0225]
2022-10-20 10:29:14
Epoch 162:  89%|███████████████████████████████████████████▌     | 16/18 [00:05<00:00,  2.96it/s, loss=0.0231, v_num=xc2k, val/loss=0.0168, val/precision=0.870, val/recall=0.906, val/f1=0.888, val/tdr=0.996, val/sa_precision=0.888, val/sa_recall=0.925, val/sa_f1=0.906, train/loss=0.0237]
2022-10-20 10:29:34
Epoch 163:  89%|███████████████████████████████████████████▌     | 16/18 [00:07<00:00,  2.26it/s, loss=0.0234, v_num=xc2k, val/loss=0.0169, val/precision=0.865, val/recall=0.910, val/f1=0.887, val/tdr=0.996, val/sa_precision=0.883, val/sa_recall=0.929, val/sa_f1=0.905, train/loss=0.0233]
2022-10-20 10:29:48
Epoch 164:  89%|███████████████████████████████████████████▌     | 16/18 [00:05<00:00,  3.11it/s, loss=0.0231, v_num=xc2k, val/loss=0.0167, val/precision=0.866, val/recall=0.909, val/f1=0.887, val/tdr=0.997, val/sa_precision=0.884, val/sa_recall=0.928, val/sa_f1=0.906, train/loss=0.0231]
2022-10-20 10:30:16
Epoch 166:  89%|████████████████████████████████████████████▍     | 16/18 [00:05<00:00,  3.00it/s, loss=0.0222, v_num=xc2k, val/loss=0.017, val/precision=0.866, val/recall=0.909, val/f1=0.887, val/tdr=0.995, val/sa_precision=0.884, val/sa_recall=0.928, val/sa_f1=0.905, train/loss=0.0227]
2022-10-20 10:30:04
Validation: 0it [00:00, ?it/s]
2022-10-20 10:30:30
Epoch 167:  89%|███████████████████████████████████████████▌     | 16/18 [00:05<00:00,  3.20it/s, loss=0.0237, v_num=xc2k, val/loss=0.0171, val/precision=0.859, val/recall=0.913, val/f1=0.885, val/tdr=0.995, val/sa_precision=0.878, val/sa_recall=0.933, val/sa_f1=0.904, train/loss=0.0227]
2022-10-20 10:30:44
Epoch 168:  89%|███████████████████████████████████████████▌     | 16/18 [00:06<00:00,  2.63it/s, loss=0.0239, v_num=xc2k, val/loss=0.0168, val/precision=0.870, val/recall=0.908, val/f1=0.888, val/tdr=0.996, val/sa_precision=0.888, val/sa_recall=0.927, val/sa_f1=0.907, train/loss=0.0232]
2022-10-20 10:30:58
Epoch 169:  89%|███████████████████████████████████████████▌     | 16/18 [00:05<00:00,  3.08it/s, loss=0.0231, v_num=xc2k, val/loss=0.0167, val/precision=0.867, val/recall=0.910, val/f1=0.888, val/tdr=0.997, val/sa_precision=0.885, val/sa_recall=0.928, val/sa_f1=0.906, train/loss=0.0233]
2022-10-20 10:31:12
Epoch 170:  89%|███████████████████████████████████████████▌     | 16/18 [00:05<00:00,  2.78it/s, loss=0.0233, v_num=xc2k, val/loss=0.0167, val/precision=0.871, val/recall=0.908, val/f1=0.889, val/tdr=0.997, val/sa_precision=0.889, val/sa_recall=0.926, val/sa_f1=0.907, train/loss=0.0232]
2022-10-20 10:31:26
Epoch 171:  89%|███████████████████████████████████████████▌     | 16/18 [00:05<00:00,  2.74it/s, loss=0.0234, v_num=xc2k, val/loss=0.0167, val/precision=0.866, val/recall=0.911, val/f1=0.888, val/tdr=0.997, val/sa_precision=0.884, val/sa_recall=0.930, val/sa_f1=0.906, train/loss=0.0235]
2022-10-20 10:31:40
Epoch 172:  89%|████████████████████████████████████████████▍     | 16/18 [00:05<00:00,  2.87it/s, loss=0.0229, v_num=xc2k, val/loss=0.0168, val/precision=0.865, val/recall=0.912, val/f1=0.888, val/tdr=0.997, val/sa_precision=0.883, val/sa_recall=0.931, val/sa_f1=0.906, train/loss=0.023]
2022-10-20 10:31:54
Epoch 173:  89%|███████████████████████████████████████████▌     | 16/18 [00:05<00:00,  3.06it/s, loss=0.0233, v_num=xc2k, val/loss=0.0169, val/precision=0.870, val/recall=0.906, val/f1=0.888, val/tdr=0.996, val/sa_precision=0.888, val/sa_recall=0.925, val/sa_f1=0.906, train/loss=0.0233]
2022-10-20 10:32:08
Epoch 174:  89%|███████████████████████████████████████████▌     | 16/18 [00:05<00:00,  2.92it/s, loss=0.0232, v_num=xc2k, val/loss=0.0168, val/precision=0.870, val/recall=0.908, val/f1=0.889, val/tdr=0.995, val/sa_precision=0.888, val/sa_recall=0.926, val/sa_f1=0.907, train/loss=0.0233]
2022-10-20 10:32:24
Epoch 175:  89%|███████████████████████████████████████████▌     | 16/18 [00:06<00:00,  2.64it/s, loss=0.0216, v_num=xc2k, val/loss=0.0168, val/precision=0.869, val/recall=0.908, val/f1=0.888, val/tdr=0.996, val/sa_precision=0.887, val/sa_recall=0.926, val/sa_f1=0.906, train/loss=0.0228]
2022-10-20 10:32:40
Epoch 176:  89%|███████████████████████████████████████████▌     | 16/18 [00:06<00:00,  2.64it/s, loss=0.0226, v_num=xc2k, val/loss=0.0167, val/precision=0.871, val/recall=0.907, val/f1=0.888, val/tdr=0.997, val/sa_precision=0.889, val/sa_recall=0.926, val/sa_f1=0.907, train/loss=0.0226]
2022-10-20 10:32:54
Epoch 177:  89%|███████████████████████████████████████████▌     | 16/18 [00:05<00:00,  3.07it/s, loss=0.0233, v_num=xc2k, val/loss=0.0167, val/precision=0.870, val/recall=0.909, val/f1=0.889, val/tdr=0.996, val/sa_precision=0.888, val/sa_recall=0.927, val/sa_f1=0.907, train/loss=0.0228]
2022-10-20 10:33:10
Epoch 178:  89%|███████████████████████████████████████████▌     | 16/18 [00:05<00:00,  2.77it/s, loss=0.0225, v_num=xc2k, val/loss=0.0168, val/precision=0.861, val/recall=0.913, val/f1=0.886, val/tdr=0.996, val/sa_precision=0.879, val/sa_recall=0.933, val/sa_f1=0.905, train/loss=0.0226]
2022-10-20 10:33:24
Epoch 179:  89%|███████████████████████████████████████████▌     | 16/18 [00:05<00:00,  3.01it/s, loss=0.0228, v_num=xc2k, val/loss=0.0168, val/precision=0.863, val/recall=0.914, val/f1=0.888, val/tdr=0.996, val/sa_precision=0.881, val/sa_recall=0.933, val/sa_f1=0.906, train/loss=0.0224]
2022-10-20 10:33:38
Epoch 180:  89%|████████████████████████████████████████████▍     | 16/18 [00:05<00:00,  2.88it/s, loss=0.023, v_num=xc2k, val/loss=0.0167, val/precision=0.871, val/recall=0.907, val/f1=0.889, val/tdr=0.996, val/sa_precision=0.889, val/sa_recall=0.926, val/sa_f1=0.907, train/loss=0.0227]
2022-10-20 10:33:52
Epoch 181:  89%|███████████████████████████████████████████▌     | 16/18 [00:05<00:00,  3.10it/s, loss=0.0231, v_num=xc2k, val/loss=0.0167, val/precision=0.872, val/recall=0.908, val/f1=0.889, val/tdr=0.996, val/sa_precision=0.890, val/sa_recall=0.926, val/sa_f1=0.907, train/loss=0.0229]
2022-10-20 10:34:06
Epoch 182:  89%|████████████████████████████████████████████▍     | 16/18 [00:05<00:00,  2.93it/s, loss=0.023, v_num=xc2k, val/loss=0.0167, val/precision=0.871, val/recall=0.908, val/f1=0.889, val/tdr=0.996, val/sa_precision=0.888, val/sa_recall=0.926, val/sa_f1=0.907, train/loss=0.0228]
2022-10-20 10:34:21
Epoch 183:  89%|███████████████████████████████████████████▌     | 16/18 [00:05<00:00,  2.99it/s, loss=0.0239, v_num=xc2k, val/loss=0.0166, val/precision=0.868, val/recall=0.909, val/f1=0.888, val/tdr=0.997, val/sa_precision=0.886, val/sa_recall=0.928, val/sa_f1=0.907, train/loss=0.0233]
2022-10-20 10:34:35
Epoch 184:  89%|███████████████████████████████████████████▌     | 16/18 [00:05<00:00,  2.99it/s, loss=0.0236, v_num=xc2k, val/loss=0.0168, val/precision=0.859, val/recall=0.917, val/f1=0.887, val/tdr=0.997, val/sa_precision=0.878, val/sa_recall=0.936, val/sa_f1=0.906, train/loss=0.0233]
2022-10-20 10:34:49
Epoch 185:  89%|████████████████████████████████████████████▍     | 16/18 [00:05<00:00,  2.90it/s, loss=0.023, v_num=xc2k, val/loss=0.0167, val/precision=0.869, val/recall=0.910, val/f1=0.889, val/tdr=0.995, val/sa_precision=0.887, val/sa_recall=0.929, val/sa_f1=0.907, train/loss=0.0236]
2022-10-20 10:35:03
Epoch 186:  89%|███████████████████████████████████████████▌     | 16/18 [00:05<00:00,  2.91it/s, loss=0.0226, v_num=xc2k, val/loss=0.0167, val/precision=0.867, val/recall=0.911, val/f1=0.888, val/tdr=0.996, val/sa_precision=0.885, val/sa_recall=0.931, val/sa_f1=0.907, train/loss=0.0223]
2022-10-20 10:35:19
Epoch 187:  89%|████████████████████████████████████████████▍     | 16/18 [00:05<00:00,  2.68it/s, loss=0.0239, v_num=xc2k, val/loss=0.0166, val/precision=0.869, val/recall=0.911, val/f1=0.889, val/tdr=0.997, val/sa_precision=0.887, val/sa_recall=0.930, val/sa_f1=0.908, train/loss=0.023]
2022-10-20 10:35:33
Epoch 188:  89%|███████████████████████████████████████████▌     | 16/18 [00:05<00:00,  2.99it/s, loss=0.0227, v_num=xc2k, val/loss=0.0166, val/precision=0.871, val/recall=0.909, val/f1=0.889, val/tdr=0.995, val/sa_precision=0.889, val/sa_recall=0.928, val/sa_f1=0.908, train/loss=0.0233]
2022-10-20 10:35:47
Epoch 189:  89%|███████████████████████████████████████████▌     | 16/18 [00:05<00:00,  2.93it/s, loss=0.0227, v_num=xc2k, val/loss=0.0167, val/precision=0.868, val/recall=0.911, val/f1=0.889, val/tdr=0.995, val/sa_precision=0.887, val/sa_recall=0.931, val/sa_f1=0.908, train/loss=0.0227]
2022-10-20 10:36:01
Epoch 190:  89%|███████████████████████████████████████████▌     | 16/18 [00:05<00:00,  2.92it/s, loss=0.0229, v_num=xc2k, val/loss=0.0167, val/precision=0.869, val/recall=0.911, val/f1=0.889, val/tdr=0.996, val/sa_precision=0.887, val/sa_recall=0.930, val/sa_f1=0.908, train/loss=0.0231]
2022-10-20 10:36:15
Epoch 191:  89%|███████████████████████████████████████████▌     | 16/18 [00:05<00:00,  3.15it/s, loss=0.0227, v_num=xc2k, val/loss=0.0166, val/precision=0.872, val/recall=0.907, val/f1=0.889, val/tdr=0.996, val/sa_precision=0.890, val/sa_recall=0.926, val/sa_f1=0.908, train/loss=0.0229]
2022-10-20 10:36:37
Testing DataLoader 0: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 4/4 [00:09<00:00,  2.44s/it]
2022-10-20 10:36:25
`Trainer.fit` stopped: `max_epochs=192` reached.
2022-10-20 10:36:25
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1,2,3]
2022-10-20 10:36:25
Testing: 0it [00:00, ?it/s]
2022-10-20 10:36:37
────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
2022-10-20 10:36:37
       Test metric             DataLoader 0
2022-10-20 10:36:37
────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
2022-10-20 10:36:37
         test/f1            0.7631277441978455
2022-10-20 10:36:37
        test/loss          0.029839543625712395
2022-10-20 10:36:37
     test/precision         0.7464532852172852
2022-10-20 10:36:37
       test/recall          0.7807998061180115
2022-10-20 10:36:37
       test/sa_f1           0.8336867094039917
2022-10-20 10:36:37
    test/sa_precision        0.815367579460144
2022-10-20 10:36:37
     test/sa_recall         0.8531008958816528
2022-10-20 10:36:37
        test/tdr             0.909693717956543
2022-10-20 10:36:37
────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────