Skip to main content

MMOneSphere: BC_PCL_PNet2_ee

This is the 'naive' way of using 'classification' PN++ to regress directly to the 3D position delta, but it seems to do a good job here despite some strange validation MSEs (sometimes they are spiking upwards). [Edit: that's because of dropout...]
Created on April 20|Last edited on May 20
(0.5744 + 0.5158 + 0.5154) / 3 = 0.5352

Train/Eval MSEs, Episode Success/Reward


50100150200Step0.060.070.080.090.1
050100150200Step246
050100150200Step00.20.40.60.81
Run set
3


Example GIFs

First seed after 250 epochs, looks good.

Second seed after 250 epochs, looks good.

Third seed after 250 epochs, looks good.


Variant

LGTM?
{
"_hidden_keys": [],
"act_type": "ee",
"actor_lr": 0.0001,
"agent": "bc",
"alg_policy": "ladle_algorithmic_v02",
"algorithm": "BC",
"batch_size": 16,
"bc_data_dir": "/data/dseita/softgym_mm/data_demo/MMOneSphere_v01_BClone_filtered_ladle_algorithmic_v02_nVars_200_obs_combo",
"bc_data_filtered": true,
"data_buffer_capacity": 1000000,
"encoder_type": "pointnet",
"env_kwargs": {
"action_mode": "translation",
"action_repeat": 8,
"camera_name": "top_down",
"deterministic": false,
"headless": true,
"horizon": 100,
"num_variations": 1000,
"observation_mode": "cam_rgb",
"render": true,
"render_mode": "fluid"
},
"env_kwargs_camera_height": 128,
"env_kwargs_camera_width": 128,
"env_kwargs_deterministic": false,
"env_kwargs_num_variations": 200,
"env_kwargs_observation_mode": "point_cloud",
"env_name": "MMOneSphere",
"env_version": "v01",
"exp_name": "MMOneSphere_v01_BC_PCL_PNet2_ee_2022_04_19_23_13_42_0001",
"hidden_dim": 1024,
"log_interval": 1,
"n_epochs": 250,
"n_eval_episodes": 10,
"num_filters": 32,
"num_layers": 4,
"save_freq": 10,
"save_model": true,
"save_video": true,
"seed": 100,
"wandb_entity": "mooey5775",
"wandb_project": "mixed_media"
}