Pedrv's workspace
Runs
4,305
Name
3,902 visualized
State
Notes
User
Tags
Created
Runtime
Sweep
batch_size
dataset
decoder
decoder_depth
decoder_dropout
decoder_hidden_dim
epochs
lr
mpgnn
mpgnn_depth
mpgnn_dropout
mpgnn_hidden_dim
mpgnn_jk
pooling
loss
max_abs_err_graphs
max_abs_err_graphs_idx
max_abs_err_pattern
max_abs_err_pattern_idx
max_squared_err_pattern
max_squared_err_pattern_idx
mean_squared_err_pattern
mean_worse_abs_errs_graph
mean_worse_abs_errs_graph_idx
mean_worse_squared_errs_graph_idx
med_abs_error
min_squared_err_pattern
min_squared_err_pattern_idx
q11
q12
q13
q14
q15
q21
Crashed
Used SAGE with mean pooling at the aggregator level with single-head attention with a MLP decoder on the non-deterministic dataset.
pedrv
dataset_v1
ndeterministic
optimization
part1
part2
sage
simple_decoder
3d 16h 33m 45s
-
31.57333
-
-
3.08667
0.32926
14.55556
-
0.00037978
-
2.52222
0.094884
6.75111
["cat","lstm","max"]
torch_geometric.nn.pool.global_add_pool
0.15476
-
-
6.15167
3208.72
5.95374
3169.28
1.23815
0.46397
0.053333
0
0.17272
0.19405
2161.10889
0.078817
0.15478
0.50563
1.28889
2.46154
0.039631
Crashed
Used GCN with a MLP decoder on the non-deterministic dataset.
pedrv
dataset_v1
gcn
ndeterministic
optimization
part1
part2
simple_decoder
4d 2h 57m 31s
-
56.67556
-
-
3.09556
0.41511
13.60222
-
0.000062979
-
2.05778
0.088685
8.00222
["cat","lstm","max"]
torch_geometric.nn.pool.global_add_pool
0.16975
-
-
6.34828
3612.28444
6.32189
3552.90444
1.35807
0.51371
0.015556
0
0.18049
0.12303
2737.62444
0.069762
0.16431
0.58749
1.72428
2.7724
0.033233
Crashed
Used GAT with single-head attention with a MLP decoder on the non-deterministic dataset.
pedrv
dataset_v1
gat
ndeterministic
optimization
part2
simple_decoder
2d 12h 3m 59s
-
35.14754
-
-
2.12568
0.50438
10.37158
-
0.000087485
-
2.01639
0.060901
10.38798
["cat","lstm","max"]
torch_geometric.nn.pool.global_add_pool
0.19373
-
-
5.69377
3580.61202
4.94734
3604.10383
1.54996
0.6216
0
0
0.2231
0.38068
2529.43716
0.17389
0.22946
0.78426
1.57358
1.98497
0.078453
Crashed
Used GAT with single-head attention with a MLP decoder on the non-deterministic dataset.
pedrv
dataset_v1
gat
ndeterministic
optimization
part1
simple_decoder
4d 6h 45m 39s
-
40.71642
-
-
2.52985
0.51832
10.29478
-
0.000077556
-
2.08955
0.1713
9.3694
["cat","lstm","max"]
torch_geometric.nn.pool.global_add_pool
0.19456
-
-
5.69889
3594.83582
5.00392
3560.17164
1.55658
0.61532
0
0
0.22098
0.35244
2857.89925
0.16423
0.23897
0.78757
1.63208
2.08843
0.076688
Crashed
Used GIN with a MLP decoder on the non-deterministic dataset.
pedrv
dataset_v1
gin
ndeterministic
optimization
part2
simple_decoder
2d 4h 40m 53s
-
30.25806
-
-
2.11694
0.74954
14.66129
-
0.00010729
-
2.97581
0.10043
9.08468
["cat","lstm","max"]
torch_geometric.nn.pool.global_add_pool
0.13978
-
-
6.62702
3372.37097
6.99036
3346.22177
1.11836
0.40854
0.028226
0
0.15966
0.067011
3599.89919
0.044732
0.10981
0.34611
1.2957
2.78019
0.020808
Crashed
Used GIN with a MLP decoder on the non-deterministic dataset.
pedrv
dataset_v1
gin
ndeterministic
optimization
part1
simple_decoder
2d 22h 54m 5s
-
36.09852
-
-
2.36946
0.75058
14.33005
-
0.00015302
-
2.94581
0.22926
10.30049
["cat","lstm","max"]
torch_geometric.nn.pool.global_add_pool
0.15238
-
-
6.37128
3192.78713
6.53343
3317.74752
1.21917
0.45143
0.009901
0
0.17102
0.12977
3349.13861
0.0628
0.13821
0.43326
1.40085
2.60979
0.031782
Crashed
Used GIN with a MLP decoder on the deterministic dataset.
pedrv
dataset_v2-1
deterministic
gin
optimization
part2
simple_decoder
4d 6h 44m 7s
-
23.14667
-
-
2.11333
0.68703
14.89333
-
0.00023338
-
2.99
0.092097
15.45
["cat","lstm","max"]
torch_geometric.nn.pool.global_add_pool
0.083428
-
-
5.96743
3404.05
-
-
-
0.28121
0.57667
-
0.093533
-
-
-
-
-
-
-
-
Crashed
Used SAGE with mean pooling at the aggregate level with a MLP decoder on the deterministic dataset.
pedrv
dataset_v2-1
deterministic
mean-pooling
optimization
part2
sage
simple_decoder
1d 3h 55m 6s
-
42.29333
-
-
2.02667
0.31638
15.68
-
0.00061242
-
2.01667
0.074746
7.85
["cat","max"]
torch_geometric.nn.pool.global_add_pool
0.098351
-
-
6.31059
3528.12
-
-
-
0.3071
0.28667
-
0.10259
-
-
-
-
-
-
-
-
Crashed
Used GAT with single-head attention with a MLP decoder on the deterministic dataset.
pedrv
dataset_v2-1
deterministic
gat
optimization
part2
simple_decoder
single-head
4d 21h 31m 15s
-
18.34667
-
-
2.11667
0.52636
11.45667
-
0.00040954
-
2.99
0.05829
15.25
["cat","lstm","max"]
torch_geometric.nn.pool.global_add_pool
0.24559
-
-
6.65631
3186.58667
-
-
-
0.57683
0.34
-
0.20915
-
-
-
-
-
-
-
-
Crashed
Used GCN with a MLP decoder on the deterministic dataset.
pedrv
dataset_v2-1
deterministic
gcn
optimization
part2
simple_decoder
2d 13h 28m 59s
-
45.49333
-
-
2.09333
0.71351
14.81333
-
0.00049985
-
2.67
0.058045
14.68667
["cat","lstm","max"]
torch_geometric.nn.pool.global_add_pool
0.16652
-
-
6.42906
3692.83
-
-
-
0.46233
0.17
-
0.15248
-
-
-
-
-
-
-
-
Crashed
Used SAGE with max pooling at the aggregate level with a MLP decoder on the deterministic dataset.
pedrv
dataset_v2-1
deterministic
max-pooling
optimization
sage
simple_decoder
1d 2h 47m 15s
-
53.65333
-
hephaestus.models.simple_decoder.SimpleDecoder
3.71333
0.3883
12.88667
100
0.00048865
torch_geometric.nn.GraphSAGE
2.11333
0.14708
11.57333
["cat","lstm","max"]
torch_geometric.nn.pool.global_add_pool
0.1306
-
-
6.09604
3719.30667
-
-
-
0.38027
0.82
-
0.13051
-
-
-
-
-
-
-
-
Crashed
Used GIN with a MLP decoder on the deterministic dataset.
pedrv
dataset_v2-1
deterministic
gin
optimization
part1
simple_decoder
1d 8h 24m 10s
-
68.48
-
hephaestus.models.simple_decoder.SimpleDecoder
2.48667
0.48629
14
100
0.00041664
torch_geometric.nn.GIN
2.76
0.20467
10.19333
["cat","lstm","max"]
torch_geometric.nn.pool.global_add_pool
0.093651
-
-
5.93659
3386.12667
-
-
-
0.30543
0.54667
-
0.10448
-
-
-
-
-
-
-
-
Crashed
Used SAGE with mean pooling at the aggregate level with a MLP decoder on the deterministic dataset.
pedrv
dataset_v2-1
deterministic
mean-pooling
optimization
part1
sage
simple_decoder
1d 1h 13m 46s
-
42.56
-
hephaestus.models.simple_decoder.SimpleDecoder
3.16
0.3213
14.41333
100
0.00061167
torch_geometric.nn.GraphSAGE
2.08667
0.13211
9.4
["cat","lstm","max"]
torch_geometric.nn.pool.global_add_pool
0.15136
-
-
6.28068
3108.57333
-
-
-
0.41888
0.37333
-
0.13501
-
-
-
-
-
-
-
-
Crashed
Used GAT with multihead with a MLP decoder on the deterministic dataset.
pedrv
dataset_v2-1
deterministic
gat
multi-head
optimization
part1
simple_decoder
1d 16h 53m 19s
-
60.26667
-
hephaestus.models.simple_decoder.SimpleDecoder
4.03333
0.51316
13.56
100
0.00013358
torch_geometric.nn.GAT
2.24667
0.12591
12.8
["cat","lstm","max"]
torch_geometric.nn.pool.global_add_pool
0.29061
-
-
6.02994
3385.29333
-
-
-
0.75186
0.30667
-
0.22913
-
-
-
-
-
-
-
-
Crashed
Used GAT with single head attention with a MLP decoder on the deterministic dataset.
pedrv
dataset_v2-1
deterministic
gat
optimization
part1
simple_decoder
single-head
1d 17h 27m 46s
-
111.36
-
hephaestus.models.simple_decoder.SimpleDecoder
2.76
0.53681
12.48
100
0.0002194
torch_geometric.nn.GAT
2.74
0.23197
12.39333
["cat","lstm","max"]
torch_geometric.nn.pool.global_add_pool
0.26284
-
-
5.96743
3350.71333
-
-
-
0.68638
0.12
-
0.22679
-
-
-
-
-
-
-
-
Crashed
Used GCN with a MLP decoder on the deterministic dataset.
pedrv
dataset_v2-1
deterministic
gcn
optimization
part1
simple_decoder
1d 4h 33m 10s
-
70.93333
-
hephaestus.models.simple_decoder.SimpleDecoder
2.90667
0.51154
13.6
100
0.00030394
torch_geometric.nn.GCN
2.08667
0.12557
14.64667
["cat","lstm","max"]
torch_geometric.nn.pool.global_add_pool
0.23122
-
-
6.36819
3546.31333
-
-
-
0.60505
0.16
-
0.20264
-
-
-
-
-
-
-
-
1-16
of 16