Tin-hoang's workspace
Runs
167
Name
162 visualized
val/mae (Min)
test/mase (Min)
test/r2
23.79982
-
-
25.14357
0.5137
0.96752
24.72547
0.50344
0.96914
31.8811
0.64493
0.96166
24.84213
0.50922
0.969
26.29227
0.55338
0.9658
28.08142
0.59259
0.96463
25.28397
0.51015
0.96923
25.66935
0.5341
0.96911
23.93725
-
-
24.47314
0.49498
0.96924
26.51835
-
-
24.26209
0.48223
0.96957
457.13086
-
-
25.66935
0.5341
0.96911
24.26209
0.48223
0.96957
24.56911
-
-
24.4688
-
-
24.91913
0.49211
0.96775
25.27432
0.531
0.96808
24.76277
0.49074
0.96986
24.74959
0.49926
0.96923
24.4688
-
-
24.26209
0.48223
0.96957
24.91913
0.49211
0.96775
25.27432
0.531
0.96808
24.40711
0.48711
0.96953
30.63398
0.61115
0.96385
24.76277
0.49074
0.96986
25.16628
0.49826
0.9681
26.02821
0.53968
0.96845
24.73453
0.49793
0.96924
25.66935
0.5341
0.96911
24.26209
0.48223
0.96957
24.22316
0.47606
0.96939
25.3541
0.50336
0.96859
27.72173
0.5604
0.96633
25.94755
0.51194
0.96832
27.78914
0.54595
0.96734
26.38418
0.53028
0.96819
25.28444
0.51234
0.96935
26.01269
0.53472
0.96877
26.01269
-
-
25.02945
0.49281
0.96956
24.54572
0.48805
0.96953
24.14663
0.47855
0.96997
24.2259
0.51467
0.9695
24.65273
0.49111
0.9692
26.07932
0.53067
0.96844
26.07932
0.53067
0.96844
25.16682
0.50169
0.96976
25.16682
0.50169
0.96976
24.18191
0.49288
0.96934
24.18191
0.49288
0.96934
24.11196
0.47727
0.96965
24.11196
0.47727
0.96965
24.22877
0.47684
0.96966
24.15658
0.47619
0.96975
24.36766
-
-
24.36484
-
-
-
-
-
90.32628
-
-
79.95825
-
-
25.2553
0.49087
0.96881
29.5169
0.61077
0.96386
25.0501
0.50051
0.96943
25.65486
0.5156
0.96832
25.83292
0.56037
0.96774
24.82912
0.4975
0.96948
25.66935
0.5341
0.96911
24.44358
0.48215
0.96977
28.9523
0.57947
0.96507
23.83827
0.48661
0.96983
32.42583
0.64134
0.9609
26.04214
0.53347
0.96861
25.0501
0.50051
0.96943
24.82912
0.4975
0.96948
24.44358
0.48215
0.96977
23.81907
0.49007
0.96982
30.71943
0.61471
0.96306
25.65486
0.5156
0.96832
25.9271
0.53684
0.96808
25.66935
0.5341
0.96911
25.70006
0.54298
0.96785
24.79749
0.50359
0.96943
24.25398
0.47453
0.96938
25.66935
0.5341
0.96911
25.46213
0.51989
0.96843
24.95939
0.5099
0.96953
24.43765
0.49921
0.96904
23.92581
0.50013
0.96959
23.93716
0.49265
0.96968
24.88841
0.49277
0.96911
25.98244
0.52126
0.96948
30.79343
0.61012
0.9634
24.23432
0.49297
0.96952
25.65486
0.5156
0.96832
25.90985
0.5472
0.96794
24.49074
0.48819
0.96958
25.66935
0.5341
0.96911
State
Notes
Tags
Created
Runtime
epochs
learning_rate
model_name
patience
batch_size
lookback
selected_features
target_field
config.BATCH_SIZE
config.DEBUG_MODE
config.LOOKBACK
config.LR
config.NUM_WORKERS
config.N_EPOCHS
config.PATIENCE
config.SELECTED_FEATURES
config.STATIC_FEATURES_SHAPE
config.TARGET_VARIABLE
config.TEMPORAL_FEATURES_SHAPE
config.TEST_PREPROCESSED_DATA_PATH
config.TIME_KEY
config.TRAIN_PREPROCESSED_DATA_PATH
config.USE_WANDB
config.VAL_PREPROCESSED_DATA_PATH
config.WANDB_PROJECT
config.WANDB_USERNAME
model_architecture
model_dict._modules.bn_lstm
model_dict._modules.bn_transformer
model_dict._modules.cnn
model_dict._modules.enc_embedding
model_dict._modules.fc
model_dict._modules.input_projection
model_dict._modules.lstm
model_dict._modules.output_layer
model_dict._modules.pos_encoder
model_dict._modules.static_proj
model_dict._modules.tcn
model_dict._modules.transformer_encoder
model_dict._non_persistent_buffers_set
model_dict.training
model_dict._modules.cnn_layers
model_dict._modules.global_avg_pool
model_dict._modules.mlp
model_dict.dropout
Finished
-
2h 1m 38s
30
0.001
Transformer_student
5
-
-
-
-
8192
false
24
0.0001
16
-
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
-
ghi
-
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
-
-
None
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Finished
-
1h 6m 19s
30
0.0001
Mamba
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
MambaModel(
(temporal_proj): Linear(in_features=19, out_features=128, bias=True)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): SiLU()
(3): Dropout(p=0.1, inplace=False)
)
(mamba_blocks): ModuleList(
(0-1): 2 x MambaBlock(
(in_proj): Linear(in_features=128, out_features=512, bias=False)
(conv1d): Conv1d(256, 256, kernel_size=(4,), stride=(1,), padding=(3,), groups=256)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm_inner): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(ssm): SelectiveSSM(
(dt_proj): Linear(in_features=256, out_features=32, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(out_proj): Linear(in_features=256, out_features=128, bias=False)
(act): SiLU()
)
)
(output_layer): Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): SiLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
-
-
-
Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): SiLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
-
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): SiLU()
(3): Dropout(p=0.1, inplace=False)
)
-
-
[]
true
-
-
-
0.1
Finished
-
47m 52s
30
0.0001
TCN
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
TCNModel(
(tcn): TemporalConvNet(
(network): Sequential(
(0): TemporalBlock(
(conv1): Conv1d(19, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(19, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(19, 32, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
(1): TemporalBlock(
(conv1): Conv1d(32, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(32, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(32, 64, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
(2): TemporalBlock(
(conv1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(relu): ReLU()
)
(3): TemporalBlock(
(conv1): Conv1d(64, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(64, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(64, 32, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=64, out_features=128, bias=True)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=128, out_features=64, bias=True)
(5): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
(8): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=64, out_features=128, bias=True)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=128, out_features=64, bias=True)
(5): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
(8): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
-
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
TemporalConvNet(
(network): Sequential(
(0): TemporalBlock(
(conv1): Conv1d(19, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(19, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(19, 32, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
(1): TemporalBlock(
(conv1): Conv1d(32, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(32, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(32, 64, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
(2): TemporalBlock(
(conv1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(relu): ReLU()
)
(3): TemporalBlock(
(conv1): Conv1d(64, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(64, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(64, 32, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
)
)
-
[]
true
-
-
-
0.1
Finished
-
46m 16s
30
0.0001
1D-CNN
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
CNN1DModel(
(cnn_layers): ModuleList(
(0): Sequential(
(0): Conv1d(19, 64, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(1): Sequential(
(0): Conv1d(64, 128, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(2): Sequential(
(0): Conv1d(128, 256, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Identity()
)
)
(global_avg_pool): AdaptiveAvgPool1d(output_size=1)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=288, out_features=128, bias=True)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=128, out_features=64, bias=True)
(5): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=288, out_features=128, bias=True)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=128, out_features=64, bias=True)
(5): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
-
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
)
-
-
[]
true
ModuleList(
(0): Sequential(
(0): Conv1d(19, 64, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(1): Sequential(
(0): Conv1d(64, 128, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(2): Sequential(
(0): Conv1d(128, 256, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Identity()
)
)
AdaptiveAvgPool1d(output_size=1)
-
0.2
Finished
-
1h 19m 6s
30
0.0001
iTransformer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
iTransformerModel(
(embedding): TokenEmbedding(
(tokenConv): Linear(in_features=24, out_features=128, bias=True)
)
(pos_encoder): PositionalEncoding()
(encoder): iTransformerEncoder(
(encoder_layers): ModuleList(
(0-1): 2 x TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
)
(linear1): Linear(in_features=128, out_features=256, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=256, out_features=128, bias=True)
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
)
)
(layer_norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
)
(decoder): iTransformerDecoder(
(projection): Linear(in_features=128, out_features=1, bias=True)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): LayerNorm((32,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=33, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=33, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
PositionalEncoding()
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): LayerNorm((32,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
-
-
[]
true
-
-
-
0.1
Finished
-
28m 46s
30
0.0001
MLP
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
MLPModel(
(mlp): Sequential(
(0): Linear(in_features=456, out_features=256, bias=True)
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=256, out_features=512, bias=True)
(5): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=512, out_features=256, bias=True)
(9): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(10): ReLU()
(11): Dropout(p=0.2, inplace=False)
(12): Linear(in_features=256, out_features=128, bias=True)
(13): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(14): ReLU()
(15): Dropout(p=0.2, inplace=False)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
-
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
-
-
[]
true
-
-
Sequential(
(0): Linear(in_features=456, out_features=256, bias=True)
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=256, out_features=512, bias=True)
(5): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=512, out_features=256, bias=True)
(9): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(10): ReLU()
(11): Dropout(p=0.2, inplace=False)
(12): Linear(in_features=256, out_features=128, bias=True)
(13): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(14): ReLU()
(15): Dropout(p=0.2, inplace=False)
)
0.2
Finished
-
35m 41s
30
0.0001
CNN-LSTM
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
CNNLSTMModel(
(cnn): Sequential(
(0): Conv1d(19, 64, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(4): Conv1d(64, 128, kernel_size=(3,), stride=(1,), padding=(1,))
(5): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(lstm): LSTM(128, 128, num_layers=2, batch_first=True, dropout=0.2)
(bn_lstm): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=32, out_features=1, bias=True)
)
)
BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
-
Sequential(
(0): Conv1d(19, 64, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(4): Conv1d(64, 128, kernel_size=(3,), stride=(1,), padding=(1,))
(5): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
-
Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=32, out_features=1, bias=True)
)
-
LSTM(128, 128, num_layers=2, batch_first=True, dropout=0.2)
-
-
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
-
-
[]
true
-
-
-
0.2
Finished
-
54m 50s
30
0.0001
TSMixer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
TSMixerModel(
(tsmixer): TSMixer(
(mixer_layers): Sequential(
(0): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(1): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(2): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(3): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(4): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(5): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(6): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(7): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(8): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=1, bias=True)
(projection): Linear(in_features=19, out_features=1, bias=True)
)
)
)
(temporal_projection): Linear(in_features=24, out_features=1, bias=True)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=33, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=33, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
-
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
-
-
[]
true
-
-
-
0.1
Finished
-
1h 3m 11s
30
0.0001
LSTM
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
LSTMModel(
(lstm): LSTM(19, 128, num_layers=2, batch_first=True, dropout=0.2)
(bn_lstm): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=32, out_features=1, bias=True)
)
)
BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
-
-
-
Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=32, out_features=1, bias=True)
)
-
LSTM(19, 128, num_layers=2, batch_first=True, dropout=0.2)
-
-
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
-
-
[]
true
-
-
-
0.2
Finished
-
1h 47m 37s
30
0.001
Transformer_student
5
-
-
-
-
8192
false
24
0.0001
16
-
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
-
ghi
-
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
-
-
None
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Finished
-
1h 15m 21s
30
0.0001
Informer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
InformerModel(
(enc_embedding): TokenEmbedding(
(tokenConv): Conv1d(19, 128, kernel_size=(3,), stride=(1,), padding=(1,), bias=False)
)
(pos_encoder): PositionalEncoding()
(encoder): Encoder(
(attn_layers): ModuleList(
(0-1): 2 x EncoderLayer(
(attention): AttentionLayer(
(inner_attention): ProbAttention(
(dropout): Dropout(p=0.1, inplace=False)
)
(query_projection): Linear(in_features=128, out_features=128, bias=True)
(key_projection): Linear(in_features=128, out_features=128, bias=True)
(value_projection): Linear(in_features=128, out_features=128, bias=True)
(out_projection): Linear(in_features=128, out_features=128, bias=True)
)
(conv1): Conv1d(128, 256, kernel_size=(1,), stride=(1,))
(conv2): Conv1d(256, 128, kernel_size=(1,), stride=(1,))
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
(activation): GELU(approximate='none')
)
)
(conv_layers): ModuleList(
(0): ConvLayer(
(downConv): Sequential(
(0): Conv1d(128, 128, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ELU(alpha=1.0)
)
(pool): MaxPool1d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
(output_layer): Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
TokenEmbedding(
(tokenConv): Conv1d(19, 128, kernel_size=(3,), stride=(1,), padding=(1,), bias=False)
)
-
-
-
Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
PositionalEncoding()
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
-
-
[]
true
-
-
-
0.1
Finished
-
28m 33s
30
0.001
Transformer_student
5
-
-
-
-
8192
false
24
0.0001
16
-
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
-
ghi
-
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
-
-
None
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Finished
-
49m 39s
30
0.0001
Transformer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
TransformerModel(
(enc_embedding): Linear(in_features=19, out_features=128, bias=True)
(pos_encoder): PositionalEncoding()
(transformer_encoder): TransformerEncoder(
(layers): ModuleList(
(0-1): 2 x TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
)
(linear1): Linear(in_features=128, out_features=256, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=256, out_features=128, bias=True)
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
)
)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
(output_layer): Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
Linear(in_features=19, out_features=128, bias=True)
-
-
-
Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
PositionalEncoding()
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
-
TransformerEncoder(
(layers): ModuleList(
(0-1): 2 x TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
)
(linear1): Linear(in_features=128, out_features=256, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=256, out_features=128, bias=True)
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
)
)
)
[]
true
-
-
-
0.1
Crashed
-
1h 8m 31s
30
0.001
Transformer_student
5
-
-
-
-
8192
false
24
0.0001
16
-
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
-
ghi
-
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
-
-
None
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Finished
-
1h 3m 8s
30
0.0001
LSTM
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
LSTMModel(
(lstm): LSTM(19, 128, num_layers=2, batch_first=True, dropout=0.2)
(bn_lstm): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=32, out_features=1, bias=True)
)
)
BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
-
-
-
Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=32, out_features=1, bias=True)
)
-
LSTM(19, 128, num_layers=2, batch_first=True, dropout=0.2)
-
-
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
-
-
[]
true
-
-
-
0.2
Finished
-
49m 36s
30
0.0001
Transformer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
TransformerModel(
(enc_embedding): Linear(in_features=19, out_features=128, bias=True)
(pos_encoder): PositionalEncoding()
(transformer_encoder): TransformerEncoder(
(layers): ModuleList(
(0-1): 2 x TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
)
(linear1): Linear(in_features=128, out_features=256, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=256, out_features=128, bias=True)
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
)
)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
(output_layer): Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
Linear(in_features=19, out_features=128, bias=True)
-
-
-
Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
PositionalEncoding()
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
-
TransformerEncoder(
(layers): ModuleList(
(0-1): 2 x TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
)
(linear1): Linear(in_features=128, out_features=256, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=256, out_features=128, bias=True)
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
)
)
)
[]
true
-
-
-
0.1
Finished
-
56m 33s
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Finished
-
1h 8m 22s
30
0.001
Transformer_student
5
-
-
-
-
8192
false
24
0.0001
16
-
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
-
ghi
-
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
-
-
None
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Finished
-
50m 33s
30
0.0001
Mamba
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
MambaModel(
(temporal_proj): Linear(in_features=19, out_features=128, bias=True)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): SiLU()
(3): Dropout(p=0.1, inplace=False)
)
(mamba_blocks): ModuleList(
(0-1): 2 x MambaBlock(
(in_proj): Linear(in_features=128, out_features=512, bias=False)
(conv1d): Conv1d(256, 256, kernel_size=(4,), stride=(1,), padding=(3,), groups=256)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm_inner): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(ssm): SelectiveSSM(
(dt_proj): Linear(in_features=256, out_features=32, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(out_proj): Linear(in_features=256, out_features=128, bias=False)
(act): SiLU()
)
)
(output_layer): Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): SiLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
-
-
-
Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): SiLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
-
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): SiLU()
(3): Dropout(p=0.1, inplace=False)
)
-
-
[]
true
-
-
-
0.1
Finished
-
1h 11m 27s
30
0.0001
iTransformer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
iTransformerModel(
(embedding): TokenEmbedding(
(tokenConv): Linear(in_features=24, out_features=128, bias=True)
)
(pos_encoder): PositionalEncoding()
(encoder): iTransformerEncoder(
(encoder_layers): ModuleList(
(0-1): 2 x TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
)
(linear1): Linear(in_features=128, out_features=256, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=256, out_features=128, bias=True)
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
)
)
(layer_norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
)
(decoder): iTransformerDecoder(
(projection): Linear(in_features=128, out_features=1, bias=True)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): LayerNorm((32,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=33, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=33, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
PositionalEncoding()
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): LayerNorm((32,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
-
-
[]
true
-
-
-
0.1
Finished
-
1h 5m 25s
30
0.0001
TSMixer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
TSMixerModel(
(tsmixer): TSMixer(
(mixer_layers): Sequential(
(0): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(1): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(2): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(3): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(4): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(5): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(6): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(7): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(8): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=1, bias=True)
(projection): Linear(in_features=19, out_features=1, bias=True)
)
)
)
(temporal_projection): Linear(in_features=24, out_features=1, bias=True)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=33, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=33, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
-
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
-
-
[]
true
-
-
-
0.1
Finished
-
1h 18m 34s
30
0.0001
Informer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
InformerModel(
(enc_embedding): TokenEmbedding(
(tokenConv): Conv1d(19, 128, kernel_size=(3,), stride=(1,), padding=(1,), bias=False)
)
(pos_encoder): PositionalEncoding()
(encoder): Encoder(
(attn_layers): ModuleList(
(0-1): 2 x EncoderLayer(
(attention): AttentionLayer(
(inner_attention): ProbAttention(
(dropout): Dropout(p=0.1, inplace=False)
)
(query_projection): Linear(in_features=128, out_features=128, bias=True)
(key_projection): Linear(in_features=128, out_features=128, bias=True)
(value_projection): Linear(in_features=128, out_features=128, bias=True)
(out_projection): Linear(in_features=128, out_features=128, bias=True)
)
(conv1): Conv1d(128, 256, kernel_size=(1,), stride=(1,))
(conv2): Conv1d(256, 128, kernel_size=(1,), stride=(1,))
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
(activation): GELU(approximate='none')
)
)
(conv_layers): ModuleList(
(0): ConvLayer(
(downConv): Sequential(
(0): Conv1d(128, 128, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ELU(alpha=1.0)
)
(pool): MaxPool1d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
(output_layer): Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
TokenEmbedding(
(tokenConv): Conv1d(19, 128, kernel_size=(3,), stride=(1,), padding=(1,), bias=False)
)
-
-
-
Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
PositionalEncoding()
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
-
-
[]
true
-
-
-
0.1
Finished
-
1h 9m 53s
30
0.001
Transformer_student
5
-
-
-
-
8192
false
24
0.0001
16
-
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
-
ghi
-
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
-
-
None
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Finished
-
49m 24s
30
0.0001
Transformer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
TransformerModel(
(enc_embedding): Linear(in_features=19, out_features=128, bias=True)
(pos_encoder): PositionalEncoding()
(transformer_encoder): TransformerEncoder(
(layers): ModuleList(
(0-1): 2 x TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
)
(linear1): Linear(in_features=128, out_features=256, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=256, out_features=128, bias=True)
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
)
)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
(output_layer): Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
Linear(in_features=19, out_features=128, bias=True)
-
-
-
Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
PositionalEncoding()
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
-
TransformerEncoder(
(layers): ModuleList(
(0-1): 2 x TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
)
(linear1): Linear(in_features=128, out_features=256, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=256, out_features=128, bias=True)
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
)
)
)
[]
true
-
-
-
0.1
Finished
-
50m 45s
30
0.0001
Mamba
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
MambaModel(
(temporal_proj): Linear(in_features=19, out_features=128, bias=True)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): SiLU()
(3): Dropout(p=0.1, inplace=False)
)
(mamba_blocks): ModuleList(
(0-1): 2 x MambaBlock(
(in_proj): Linear(in_features=128, out_features=512, bias=False)
(conv1d): Conv1d(256, 256, kernel_size=(4,), stride=(1,), padding=(3,), groups=256)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm_inner): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(ssm): SelectiveSSM(
(dt_proj): Linear(in_features=256, out_features=32, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(out_proj): Linear(in_features=256, out_features=128, bias=False)
(act): SiLU()
)
)
(output_layer): Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): SiLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
-
-
-
Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): SiLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
-
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): SiLU()
(3): Dropout(p=0.1, inplace=False)
)
-
-
[]
true
-
-
-
0.1
Finished
-
1h 11m 15s
30
0.0001
iTransformer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
iTransformerModel(
(embedding): TokenEmbedding(
(tokenConv): Linear(in_features=24, out_features=128, bias=True)
)
(pos_encoder): PositionalEncoding()
(encoder): iTransformerEncoder(
(encoder_layers): ModuleList(
(0-1): 2 x TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
)
(linear1): Linear(in_features=128, out_features=256, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=256, out_features=128, bias=True)
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
)
)
(layer_norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
)
(decoder): iTransformerDecoder(
(projection): Linear(in_features=128, out_features=1, bias=True)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): LayerNorm((32,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=33, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=33, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
PositionalEncoding()
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): LayerNorm((32,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
-
-
[]
true
-
-
-
0.1
Finished
-
30m 41s
30
0.0001
TCN
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
TCNModel(
(tcn): TemporalConvNet(
(network): Sequential(
(0): TemporalBlock(
(conv1): Conv1d(19, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(19, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(19, 32, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
(1): TemporalBlock(
(conv1): Conv1d(32, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(32, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(32, 64, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
(2): TemporalBlock(
(conv1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(relu): ReLU()
)
(3): TemporalBlock(
(conv1): Conv1d(64, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(64, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(64, 32, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=64, out_features=128, bias=True)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=128, out_features=64, bias=True)
(5): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
(8): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=64, out_features=128, bias=True)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=128, out_features=64, bias=True)
(5): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
(8): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
-
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
TemporalConvNet(
(network): Sequential(
(0): TemporalBlock(
(conv1): Conv1d(19, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(19, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(19, 32, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
(1): TemporalBlock(
(conv1): Conv1d(32, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(32, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(32, 64, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
(2): TemporalBlock(
(conv1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(relu): ReLU()
)
(3): TemporalBlock(
(conv1): Conv1d(64, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(64, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(64, 32, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
)
)
-
[]
true
-
-
-
0.1
Finished
-
49m 52s
30
0.0001
1D-CNN
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
CNN1DModel(
(cnn_layers): ModuleList(
(0): Sequential(
(0): Conv1d(19, 64, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(1): Sequential(
(0): Conv1d(64, 128, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(2): Sequential(
(0): Conv1d(128, 256, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Identity()
)
)
(global_avg_pool): AdaptiveAvgPool1d(output_size=1)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=288, out_features=128, bias=True)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=128, out_features=64, bias=True)
(5): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=288, out_features=128, bias=True)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=128, out_features=64, bias=True)
(5): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
-
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
)
-
-
[]
true
ModuleList(
(0): Sequential(
(0): Conv1d(19, 64, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(1): Sequential(
(0): Conv1d(64, 128, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(2): Sequential(
(0): Conv1d(128, 256, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Identity()
)
)
AdaptiveAvgPool1d(output_size=1)
-
0.2
Finished
-
1h 5m 45s
30
0.0001
TSMixer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
TSMixerModel(
(tsmixer): TSMixer(
(mixer_layers): Sequential(
(0): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(1): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(2): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(3): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(4): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(5): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(6): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(7): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(8): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=1, bias=True)
(projection): Linear(in_features=19, out_features=1, bias=True)
)
)
)
(temporal_projection): Linear(in_features=24, out_features=1, bias=True)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=33, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=33, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
-
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
-
-
[]
true
-
-
-
0.1
Finished
-
32m 9s
30
0.0001
MLP
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
MLPModel(
(mlp): Sequential(
(0): Linear(in_features=456, out_features=256, bias=True)
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=256, out_features=512, bias=True)
(5): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=512, out_features=256, bias=True)
(9): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(10): ReLU()
(11): Dropout(p=0.2, inplace=False)
(12): Linear(in_features=256, out_features=128, bias=True)
(13): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(14): ReLU()
(15): Dropout(p=0.2, inplace=False)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
-
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
-
-
[]
true
-
-
Sequential(
(0): Linear(in_features=456, out_features=256, bias=True)
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=256, out_features=512, bias=True)
(5): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=512, out_features=256, bias=True)
(9): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(10): ReLU()
(11): Dropout(p=0.2, inplace=False)
(12): Linear(in_features=256, out_features=128, bias=True)
(13): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(14): ReLU()
(15): Dropout(p=0.2, inplace=False)
)
0.2
Finished
-
30m 18s
30
0.0001
CNN-LSTM
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
CNNLSTMModel(
(cnn): Sequential(
(0): Conv1d(19, 64, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(4): Conv1d(64, 128, kernel_size=(3,), stride=(1,), padding=(1,))
(5): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(lstm): LSTM(128, 128, num_layers=2, batch_first=True, dropout=0.2)
(bn_lstm): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=32, out_features=1, bias=True)
)
)
BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
-
Sequential(
(0): Conv1d(19, 64, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(4): Conv1d(64, 128, kernel_size=(3,), stride=(1,), padding=(1,))
(5): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
-
Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=32, out_features=1, bias=True)
)
-
LSTM(128, 128, num_layers=2, batch_first=True, dropout=0.2)
-
-
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
-
-
[]
true
-
-
-
0.2
Finished
-
1h 18m 30s
30
0.0001
Informer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
InformerModel(
(enc_embedding): TokenEmbedding(
(tokenConv): Conv1d(19, 128, kernel_size=(3,), stride=(1,), padding=(1,), bias=False)
)
(pos_encoder): PositionalEncoding()
(encoder): Encoder(
(attn_layers): ModuleList(
(0-1): 2 x EncoderLayer(
(attention): AttentionLayer(
(inner_attention): ProbAttention(
(dropout): Dropout(p=0.1, inplace=False)
)
(query_projection): Linear(in_features=128, out_features=128, bias=True)
(key_projection): Linear(in_features=128, out_features=128, bias=True)
(value_projection): Linear(in_features=128, out_features=128, bias=True)
(out_projection): Linear(in_features=128, out_features=128, bias=True)
)
(conv1): Conv1d(128, 256, kernel_size=(1,), stride=(1,))
(conv2): Conv1d(256, 128, kernel_size=(1,), stride=(1,))
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
(activation): GELU(approximate='none')
)
)
(conv_layers): ModuleList(
(0): ConvLayer(
(downConv): Sequential(
(0): Conv1d(128, 128, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ELU(alpha=1.0)
)
(pool): MaxPool1d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
(output_layer): Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
TokenEmbedding(
(tokenConv): Conv1d(19, 128, kernel_size=(3,), stride=(1,), padding=(1,), bias=False)
)
-
-
-
Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
PositionalEncoding()
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
-
-
[]
true
-
-
-
0.1
Finished
-
1h 3m 19s
30
0.0001
LSTM
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
LSTMModel(
(lstm): LSTM(19, 128, num_layers=2, batch_first=True, dropout=0.2)
(bn_lstm): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=32, out_features=1, bias=True)
)
)
BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
-
-
-
Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=32, out_features=1, bias=True)
)
-
LSTM(19, 128, num_layers=2, batch_first=True, dropout=0.2)
-
-
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
-
-
[]
true
-
-
-
0.2
Finished
-
49m 23s
30
0.0001
Transformer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
TransformerModel(
(enc_embedding): Linear(in_features=19, out_features=128, bias=True)
(pos_encoder): PositionalEncoding()
(transformer_encoder): TransformerEncoder(
(layers): ModuleList(
(0-1): 2 x TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
)
(linear1): Linear(in_features=128, out_features=256, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=256, out_features=128, bias=True)
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
)
)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
(output_layer): Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
Linear(in_features=19, out_features=128, bias=True)
-
-
-
Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
PositionalEncoding()
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
-
TransformerEncoder(
(layers): ModuleList(
(0-1): 2 x TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
)
(linear1): Linear(in_features=128, out_features=256, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=256, out_features=128, bias=True)
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
)
)
)
[]
true
-
-
-
0.1
Finished
-
27m 48s
30
0.0001
TCN
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
TCNModel(
(tcn): TemporalConvNet(
(network): Sequential(
(0): TemporalBlock(
(conv1): Conv1d(19, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(19, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(19, 32, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
(1): TemporalBlock(
(conv1): Conv1d(32, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(32, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(32, 64, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
(2): TemporalBlock(
(conv1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(relu): ReLU()
)
(3): TemporalBlock(
(conv1): Conv1d(64, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(64, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(64, 32, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=64, out_features=128, bias=True)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=128, out_features=64, bias=True)
(5): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
(8): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=64, out_features=128, bias=True)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=128, out_features=64, bias=True)
(5): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
(8): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
-
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
TemporalConvNet(
(network): Sequential(
(0): TemporalBlock(
(conv1): Conv1d(19, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(19, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(19, 32, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
(1): TemporalBlock(
(conv1): Conv1d(32, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(32, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(32, 64, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
(2): TemporalBlock(
(conv1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(relu): ReLU()
)
(3): TemporalBlock(
(conv1): Conv1d(64, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(64, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(64, 32, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
)
)
-
[]
true
-
-
-
0.1
Finished
-
58m 48s
30
0.0001
Mamba
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
MambaModel(
(temporal_proj): Linear(in_features=19, out_features=128, bias=True)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): SiLU()
(3): Dropout(p=0.1, inplace=False)
)
(mamba_blocks): ModuleList(
(0): MambaBlock(
(in_proj): Linear(in_features=128, out_features=512, bias=False)
(conv1d): Conv1d(256, 256, kernel_size=(4,), stride=(1,), padding=(3,), groups=256)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm_inner): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(ssm): SelectiveSSM(
(dt_proj): Linear(in_features=256, out_features=16, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(out_proj): Linear(in_features=256, out_features=128, bias=False)
(act): SiLU()
)
)
(output_layer): Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): SiLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
-
-
-
Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): SiLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
-
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): SiLU()
(3): Dropout(p=0.1, inplace=False)
)
-
-
[]
true
-
-
-
0.1
Finished
-
26m 17s
30
0.0001
1D-CNN
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
CNN1DModel(
(cnn_layers): ModuleList(
(0): Sequential(
(0): Conv1d(19, 64, kernel_size=(7,), stride=(1,), padding=(3,))
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(1): Sequential(
(0): Conv1d(64, 128, kernel_size=(5,), stride=(1,), padding=(2,))
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(2): Sequential(
(0): Conv1d(128, 256, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Identity()
)
)
(global_avg_pool): AdaptiveAvgPool1d(output_size=1)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=288, out_features=128, bias=True)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=128, out_features=64, bias=True)
(5): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
(8): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=288, out_features=128, bias=True)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=128, out_features=64, bias=True)
(5): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
(8): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
-
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
-
-
[]
true
ModuleList(
(0): Sequential(
(0): Conv1d(19, 64, kernel_size=(7,), stride=(1,), padding=(3,))
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(1): Sequential(
(0): Conv1d(64, 128, kernel_size=(5,), stride=(1,), padding=(2,))
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(2): Sequential(
(0): Conv1d(128, 256, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Identity()
)
)
AdaptiveAvgPool1d(output_size=1)
-
0.1
Finished
-
28m 40s
30
0.0001
MLP
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
MLPModel(
(mlp): Sequential(
(0): Linear(in_features=456, out_features=256, bias=True)
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=256, out_features=512, bias=True)
(5): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=512, out_features=256, bias=True)
(9): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(10): ReLU()
(11): Dropout(p=0.2, inplace=False)
(12): Linear(in_features=256, out_features=128, bias=True)
(13): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(14): ReLU()
(15): Dropout(p=0.2, inplace=False)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
-
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
-
-
[]
true
-
-
Sequential(
(0): Linear(in_features=456, out_features=256, bias=True)
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=256, out_features=512, bias=True)
(5): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=512, out_features=256, bias=True)
(9): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(10): ReLU()
(11): Dropout(p=0.2, inplace=False)
(12): Linear(in_features=256, out_features=128, bias=True)
(13): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(14): ReLU()
(15): Dropout(p=0.2, inplace=False)
)
0.2
Finished
-
49m 9s
30
0.0001
iTransformer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
iTransformerModel(
(embedding): TokenEmbedding(
(tokenConv): Linear(in_features=24, out_features=128, bias=True)
)
(pos_encoder): PositionalEncoding()
(encoder): iTransformerEncoder(
(encoder_layers): ModuleList(
(0): TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
)
(linear1): Linear(in_features=128, out_features=256, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=256, out_features=128, bias=True)
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
)
)
(layer_norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
)
(decoder): iTransformerDecoder(
(projection): Linear(in_features=128, out_features=1, bias=True)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): LayerNorm((32,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=33, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=33, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
PositionalEncoding()
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): LayerNorm((32,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
-
-
[]
true
-
-
-
0.1
Finished
-
25m 57s
30
0.0001
CNN-LSTM
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
CNNLSTMModel(
(cnn): Sequential(
(0): Conv1d(19, 64, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(4): Conv1d(64, 128, kernel_size=(3,), stride=(1,), padding=(1,))
(5): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(lstm): LSTM(128, 128, num_layers=2, batch_first=True, dropout=0.2)
(bn_lstm): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=32, out_features=1, bias=True)
)
)
BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
-
Sequential(
(0): Conv1d(19, 64, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(4): Conv1d(64, 128, kernel_size=(3,), stride=(1,), padding=(1,))
(5): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
-
Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=32, out_features=1, bias=True)
)
-
LSTM(128, 128, num_layers=2, batch_first=True, dropout=0.2)
-
-
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
-
-
[]
true
-
-
-
0.2
Finished
-
50m 50s
30
0.0001
TSMixer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
TSMixerModel(
(tsmixer): TSMixer(
(mixer_layers): Sequential(
(0): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(1): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(2): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(3): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(4): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(5): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(6): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(7): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(8): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=1, bias=True)
(projection): Linear(in_features=19, out_features=1, bias=True)
)
)
)
(temporal_projection): Linear(in_features=24, out_features=1, bias=True)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=33, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=33, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
-
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
-
-
[]
true
-
-
-
0.1
Finished
-
42m 11s
30
0.0001
LSTM
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
LSTMModel(
(lstm): LSTM(19, 128, num_layers=2, batch_first=True, dropout=0.2)
(bn_lstm): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=32, out_features=1, bias=True)
)
)
BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
-
-
-
Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=32, out_features=1, bias=True)
)
-
LSTM(19, 128, num_layers=2, batch_first=True, dropout=0.2)
-
-
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
-
-
[]
true
-
-
-
0.2
Finished
-
42m 16s
30
0.0001
LSTM
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
LSTMModel(
(lstm): LSTM(19, 128, num_layers=2, batch_first=True, dropout=0.2)
(bn_lstm): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=32, out_features=1, bias=True)
)
)
BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
-
-
-
Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=32, out_features=1, bias=True)
)
-
LSTM(19, 128, num_layers=2, batch_first=True, dropout=0.2)
-
-
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
-
-
[]
true
-
-
-
0.2
Finished
-
1h 21m 15s
30
0.0001
Informer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
InformerModel(
(enc_embedding): TokenEmbedding(
(tokenConv): Conv1d(19, 128, kernel_size=(3,), stride=(1,), padding=(1,), bias=False, padding_mode=circular)
)
(pos_encoder): PositionalEncoding()
(encoder): Encoder(
(attn_layers): ModuleList(
(0): EncoderLayer(
(attention): AttentionLayer(
(inner_attention): ProbAttention(
(dropout): Dropout(p=0.1, inplace=False)
)
(query_projection): Linear(in_features=128, out_features=128, bias=True)
(key_projection): Linear(in_features=128, out_features=128, bias=True)
(value_projection): Linear(in_features=128, out_features=128, bias=True)
(out_projection): Linear(in_features=128, out_features=128, bias=True)
)
(conv1): Conv1d(128, 256, kernel_size=(1,), stride=(1,))
(conv2): Conv1d(256, 128, kernel_size=(1,), stride=(1,))
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
(output_layer): Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
TokenEmbedding(
(tokenConv): Conv1d(19, 128, kernel_size=(3,), stride=(1,), padding=(1,), bias=False, padding_mode=circular)
)
-
-
-
Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
PositionalEncoding()
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
-
-
[]
true
-
-
-
-
Finished
-
1h 2m 33s
30
0.0001
Transformer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
TransformerModel(
(enc_embedding): Linear(in_features=19, out_features=128, bias=True)
(pos_encoder): PositionalEncoding()
(transformer_encoder): TransformerEncoder(
(layers): ModuleList(
(0): TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
)
(linear1): Linear(in_features=128, out_features=256, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=256, out_features=128, bias=True)
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
)
)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
(output_layer): Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
Linear(in_features=19, out_features=128, bias=True)
-
-
-
Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
PositionalEncoding()
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
-
TransformerEncoder(
(layers): ModuleList(
(0): TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
)
(linear1): Linear(in_features=128, out_features=256, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=256, out_features=128, bias=True)
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
)
)
)
[]
true
-
-
-
0.1
Finished
-
55m 24s
30
0.0001
TCN
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
TCNModel(
(tcn): TemporalConvNet(
(network): Sequential(
(0): TemporalBlock(
(conv1): Conv1d(19, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(19, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(19, 32, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
(1): TemporalBlock(
(conv1): Conv1d(32, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(32, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(32, 64, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
(2): TemporalBlock(
(conv1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(relu): ReLU()
)
(3): TemporalBlock(
(conv1): Conv1d(64, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(64, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(64, 32, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=64, out_features=128, bias=True)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=128, out_features=64, bias=True)
(5): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
(8): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=64, out_features=128, bias=True)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=128, out_features=64, bias=True)
(5): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
(8): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
-
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
TemporalConvNet(
(network): Sequential(
(0): TemporalBlock(
(conv1): Conv1d(19, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(19, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(19, 32, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
(1): TemporalBlock(
(conv1): Conv1d(32, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(32, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(32, 64, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
(2): TemporalBlock(
(conv1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(relu): ReLU()
)
(3): TemporalBlock(
(conv1): Conv1d(64, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(64, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(64, 32, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
)
)
-
[]
true
-
-
-
0.1
Finished
-
48m 56s
30
0.0001
Mamba
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
MambaModel(
(temporal_proj): Linear(in_features=19, out_features=128, bias=True)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): SiLU()
(3): Dropout(p=0.1, inplace=False)
)
(embedding_dropout): Dropout(p=0.1, inplace=False)
(norm_in): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(mamba_blocks): ModuleList(
(0): MambaBlock(
(in_proj): Linear(in_features=128, out_features=512, bias=False)
(conv1d): Conv1d(256, 256, kernel_size=(4,), stride=(1,), padding=(3,), groups=256)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(ssm): SelectiveSSM(
(dt_proj): Linear(in_features=256, out_features=16, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(out_proj): Linear(in_features=256, out_features=128, bias=False)
(act): SiLU()
)
)
(norm_out): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(output_layer): Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): SiLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
-
-
-
Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): SiLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
-
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): SiLU()
(3): Dropout(p=0.1, inplace=False)
)
-
-
[]
true
-
-
-
0.1
Finished
-
1h 13m 12s
30
0.0001
Mamba
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
MambaModel(
(temporal_proj): Linear(in_features=19, out_features=128, bias=True)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): SiLU()
(3): Dropout(p=0.1, inplace=False)
)
(mamba_blocks): ModuleList(
(0): MambaBlock(
(in_proj): Linear(in_features=128, out_features=512, bias=False)
(conv1d): Conv1d(256, 256, kernel_size=(4,), stride=(1,), padding=(3,), groups=256)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm_inner): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(ssm): SelectiveSSM(
(dt_proj): Linear(in_features=256, out_features=16, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(out_proj): Linear(in_features=256, out_features=128, bias=False)
(act): SiLU()
)
)
(output_layer): Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): SiLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
-
-
-
Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): SiLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
-
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): SiLU()
(3): Dropout(p=0.1, inplace=False)
)
-
-
[]
true
-
-
-
0.1
Finished
-
59m 55s
30
0.0001
iTransformer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
iTransformerModel(
(embedding): TokenEmbedding(
(tokenConv): Linear(in_features=24, out_features=128, bias=True)
)
(pos_encoder): PositionalEncoding()
(encoder): iTransformerEncoder(
(encoder_layers): ModuleList(
(0): TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
)
(linear1): Linear(in_features=128, out_features=256, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=256, out_features=128, bias=True)
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
)
)
(layer_norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
)
(decoder): iTransformerDecoder(
(projection): Linear(in_features=128, out_features=1, bias=True)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): LayerNorm((32,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=33, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=33, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
PositionalEncoding()
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): LayerNorm((32,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
-
-
[]
true
-
-
-
0.1
Finished
-
58m 47s
30
0.0001
iTransformer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
iTransformerModel(
(embedding): TokenEmbedding(
(tokenConv): Linear(in_features=24, out_features=128, bias=True)
)
(pos_encoder): PositionalEncoding()
(encoder): iTransformerEncoder(
(encoder_layers): ModuleList(
(0): TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
)
(linear1): Linear(in_features=128, out_features=256, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=256, out_features=128, bias=True)
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
)
)
(layer_norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
)
(decoder): iTransformerDecoder(
(projection): Linear(in_features=128, out_features=1, bias=True)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): LayerNorm((32,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=33, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=33, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
PositionalEncoding()
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): LayerNorm((32,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
-
-
[]
true
-
-
-
0.1
Finished
-
1h 3m 36s
30
0.0001
TSMixer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
TSMixerModel(
(tsmixer): TSMixer(
(mixer_layers): Sequential(
(0): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(1): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(2): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(3): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(4): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(5): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(6): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(7): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(8): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=1, bias=True)
(projection): Linear(in_features=19, out_features=1, bias=True)
)
)
)
(temporal_projection): Linear(in_features=24, out_features=1, bias=True)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=33, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=33, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
-
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
-
-
[]
true
-
-
-
0.1
Finished
-
1h 3m 17s
30
0.0001
TSMixer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
TSMixerModel(
(tsmixer): TSMixer(
(mixer_layers): Sequential(
(0): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(1): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(2): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(3): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(4): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(5): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(6): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(7): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(8): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=1, bias=True)
(projection): Linear(in_features=19, out_features=1, bias=True)
)
)
)
(temporal_projection): Linear(in_features=24, out_features=1, bias=True)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=33, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=33, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
-
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
-
-
[]
true
-
-
-
0.1
Finished
-
1h 19m 37s
30
0.0001
Informer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
InformerModel(
(enc_embedding): TokenEmbedding(
(tokenConv): Conv1d(19, 128, kernel_size=(3,), stride=(1,), padding=(1,), bias=False, padding_mode=circular)
)
(pos_encoder): PositionalEncoding()
(encoder): Encoder(
(attn_layers): ModuleList(
(0): EncoderLayer(
(attention): AttentionLayer(
(inner_attention): ProbAttention(
(dropout): Dropout(p=0.1, inplace=False)
)
(query_projection): Linear(in_features=128, out_features=128, bias=True)
(key_projection): Linear(in_features=128, out_features=128, bias=True)
(value_projection): Linear(in_features=128, out_features=128, bias=True)
(out_projection): Linear(in_features=128, out_features=128, bias=True)
)
(conv1): Conv1d(128, 256, kernel_size=(1,), stride=(1,))
(conv2): Conv1d(256, 128, kernel_size=(1,), stride=(1,))
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
(output_layer): Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
TokenEmbedding(
(tokenConv): Conv1d(19, 128, kernel_size=(3,), stride=(1,), padding=(1,), bias=False, padding_mode=circular)
)
-
-
-
Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
PositionalEncoding()
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
-
-
[]
true
-
-
-
-
Finished
-
1h 20m 47s
30
0.0001
Informer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
InformerModel(
(enc_embedding): TokenEmbedding(
(tokenConv): Conv1d(19, 128, kernel_size=(3,), stride=(1,), padding=(1,), bias=False, padding_mode=circular)
)
(pos_encoder): PositionalEncoding()
(encoder): Encoder(
(attn_layers): ModuleList(
(0): EncoderLayer(
(attention): AttentionLayer(
(inner_attention): ProbAttention(
(dropout): Dropout(p=0.1, inplace=False)
)
(query_projection): Linear(in_features=128, out_features=128, bias=True)
(key_projection): Linear(in_features=128, out_features=128, bias=True)
(value_projection): Linear(in_features=128, out_features=128, bias=True)
(out_projection): Linear(in_features=128, out_features=128, bias=True)
)
(conv1): Conv1d(128, 256, kernel_size=(1,), stride=(1,))
(conv2): Conv1d(256, 128, kernel_size=(1,), stride=(1,))
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
(output_layer): Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
TokenEmbedding(
(tokenConv): Conv1d(19, 128, kernel_size=(3,), stride=(1,), padding=(1,), bias=False, padding_mode=circular)
)
-
-
-
Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
PositionalEncoding()
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
-
-
[]
true
-
-
-
-
Finished
-
56m 55s
30
0.0001
Transformer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
TransformerModel(
(enc_embedding): Linear(in_features=19, out_features=128, bias=True)
(pos_encoder): PositionalEncoding()
(transformer_encoder): TransformerEncoder(
(layers): ModuleList(
(0): TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
)
(linear1): Linear(in_features=128, out_features=256, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=256, out_features=128, bias=True)
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
)
)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
(output_layer): Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
Linear(in_features=19, out_features=128, bias=True)
-
-
-
Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
PositionalEncoding()
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
-
TransformerEncoder(
(layers): ModuleList(
(0): TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
)
(linear1): Linear(in_features=128, out_features=256, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=256, out_features=128, bias=True)
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
)
)
)
[]
true
-
-
-
0.1
Finished
-
58m 52s
30
0.0001
Transformer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
TransformerModel(
(enc_embedding): Linear(in_features=19, out_features=128, bias=True)
(pos_encoder): PositionalEncoding()
(transformer_encoder): TransformerEncoder(
(layers): ModuleList(
(0): TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
)
(linear1): Linear(in_features=128, out_features=256, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=256, out_features=128, bias=True)
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
)
)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
(output_layer): Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
Linear(in_features=19, out_features=128, bias=True)
-
-
-
Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
PositionalEncoding()
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
-
TransformerEncoder(
(layers): ModuleList(
(0): TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
)
(linear1): Linear(in_features=128, out_features=256, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=256, out_features=128, bias=True)
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
)
)
)
[]
true
-
-
-
0.1
Finished
-
32m 57s
30
0.0001
TCN
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
TCNModel(
(tcn): TemporalConvNet(
(network): Sequential(
(0): TemporalBlock(
(conv1): Conv1d(19, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(19, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(19, 32, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
(1): TemporalBlock(
(conv1): Conv1d(32, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(32, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(32, 64, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
(2): TemporalBlock(
(conv1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(relu): ReLU()
)
(3): TemporalBlock(
(conv1): Conv1d(64, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(64, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(64, 32, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=64, out_features=128, bias=True)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=128, out_features=64, bias=True)
(5): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
(8): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=64, out_features=128, bias=True)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=128, out_features=64, bias=True)
(5): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
(8): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
-
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
TemporalConvNet(
(network): Sequential(
(0): TemporalBlock(
(conv1): Conv1d(19, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(19, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(19, 32, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
(1): TemporalBlock(
(conv1): Conv1d(32, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(32, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(32, 64, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
(2): TemporalBlock(
(conv1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(relu): ReLU()
)
(3): TemporalBlock(
(conv1): Conv1d(64, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(64, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(64, 32, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
)
)
-
[]
true
-
-
-
0.1
Finished
-
33m 31s
30
0.0001
TCN
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
TCNModel(
(tcn): TemporalConvNet(
(network): Sequential(
(0): TemporalBlock(
(conv1): Conv1d(19, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(19, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(19, 32, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
(1): TemporalBlock(
(conv1): Conv1d(32, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(32, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(32, 64, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
(2): TemporalBlock(
(conv1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(relu): ReLU()
)
(3): TemporalBlock(
(conv1): Conv1d(64, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(64, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(64, 32, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=64, out_features=128, bias=True)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=128, out_features=64, bias=True)
(5): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
(8): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=64, out_features=128, bias=True)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=128, out_features=64, bias=True)
(5): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
(8): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
-
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
TemporalConvNet(
(network): Sequential(
(0): TemporalBlock(
(conv1): Conv1d(19, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(19, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(19, 32, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
(1): TemporalBlock(
(conv1): Conv1d(32, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(32, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(32, 64, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
(2): TemporalBlock(
(conv1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(relu): ReLU()
)
(3): TemporalBlock(
(conv1): Conv1d(64, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(64, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(64, 32, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
)
)
-
[]
true
-
-
-
0.1
Finished
-
1h 3m 12s
30
0.001
Transformer_student
5
-
-
-
-
8192
false
24
0.0001
16
-
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
-
ghi
-
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
-
-
None
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Finished
-
1h 3m 9s
30
0.001
Transformer_student
5
-
-
-
-
8192
false
24
0.0001
16
-
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
-
ghi
-
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
-
-
None
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Finished
-
11m 11s
30
0.001
Transformer_student
5
-
-
-
-
8192
false
24
0.0001
16
-
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
-
ghi
-
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
-
-
None
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Finished
-
23s
10
0.001
Transformer_student
5
-
-
-
-
1024
true
24
0.0001
4
-
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
-
ghi
-
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
-
-
None
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Finished
-
2m 40s
10
0.001
Transformer_student
5
-
-
-
-
1024
true
24
0.0001
4
-
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
-
ghi
-
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
-
-
None
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Finished
-
59m 55s
30
0.0001
iTransformer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
iTransformerModel(
(embedding): TokenEmbedding(
(tokenConv): Linear(in_features=24, out_features=128, bias=True)
)
(pos_encoder): PositionalEncoding()
(encoder): iTransformerEncoder(
(encoder_layers): ModuleList(
(0): TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
)
(linear1): Linear(in_features=128, out_features=256, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=256, out_features=128, bias=True)
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
)
)
(layer_norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
)
(decoder): iTransformerDecoder(
(projection): Linear(in_features=128, out_features=1, bias=True)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): LayerNorm((32,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=33, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=33, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
PositionalEncoding()
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): LayerNorm((32,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
-
-
[]
true
-
-
-
0.1
Finished
-
29m 44s
30
0.0001
1D-CNN
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
CNN1DModel(
(cnn_layers): ModuleList(
(0): Sequential(
(0): Conv1d(19, 64, kernel_size=(7,), stride=(1,), padding=(3,))
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(1): Sequential(
(0): Conv1d(64, 128, kernel_size=(5,), stride=(1,), padding=(2,))
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(2): Sequential(
(0): Conv1d(128, 256, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Identity()
)
)
(global_avg_pool): AdaptiveAvgPool1d(output_size=1)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=288, out_features=128, bias=True)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=128, out_features=64, bias=True)
(5): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
(8): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=288, out_features=128, bias=True)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=128, out_features=64, bias=True)
(5): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
(8): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
-
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
-
-
[]
true
ModuleList(
(0): Sequential(
(0): Conv1d(19, 64, kernel_size=(7,), stride=(1,), padding=(3,))
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(1): Sequential(
(0): Conv1d(64, 128, kernel_size=(5,), stride=(1,), padding=(2,))
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(2): Sequential(
(0): Conv1d(128, 256, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Identity()
)
)
AdaptiveAvgPool1d(output_size=1)
-
0.1
Finished
-
1h 14m 4s
30
0.0001
TSMixer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
TSMixerModel(
(tsmixer): TSMixer(
(mixer_layers): Sequential(
(0): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(1): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(2): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(3): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(4): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(5): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(6): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(7): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(8): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=1, bias=True)
(projection): Linear(in_features=19, out_features=1, bias=True)
)
)
)
(temporal_projection): Linear(in_features=24, out_features=1, bias=True)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=33, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=33, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
-
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
-
-
[]
true
-
-
-
0.1
Finished
-
28m 40s
30
0.0001
MLP
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
MLPModel(
(mlp): Sequential(
(0): Linear(in_features=456, out_features=256, bias=True)
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=256, out_features=512, bias=True)
(5): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=512, out_features=256, bias=True)
(9): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(10): ReLU()
(11): Dropout(p=0.2, inplace=False)
(12): Linear(in_features=256, out_features=128, bias=True)
(13): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(14): ReLU()
(15): Dropout(p=0.2, inplace=False)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
-
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
-
-
[]
true
-
-
Sequential(
(0): Linear(in_features=456, out_features=256, bias=True)
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=256, out_features=512, bias=True)
(5): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=512, out_features=256, bias=True)
(9): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(10): ReLU()
(11): Dropout(p=0.2, inplace=False)
(12): Linear(in_features=256, out_features=128, bias=True)
(13): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(14): ReLU()
(15): Dropout(p=0.2, inplace=False)
)
0.2
Finished
-
33m 21s
30
0.0001
CNN-LSTM
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
CNNLSTMModel(
(cnn): Sequential(
(0): Conv1d(19, 64, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(4): Conv1d(64, 128, kernel_size=(3,), stride=(1,), padding=(1,))
(5): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(lstm): LSTM(128, 128, num_layers=2, batch_first=True, dropout=0.2)
(bn_lstm): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=32, out_features=1, bias=True)
)
)
BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
-
Sequential(
(0): Conv1d(19, 64, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(4): Conv1d(64, 128, kernel_size=(3,), stride=(1,), padding=(1,))
(5): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
-
Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=32, out_features=1, bias=True)
)
-
LSTM(128, 128, num_layers=2, batch_first=True, dropout=0.2)
-
-
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
-
-
[]
true
-
-
-
0.2
Finished
-
1h 2m 39s
30
0.0001
Informer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
InformerModel(
(enc_embedding): TokenEmbedding(
(tokenConv): Conv1d(19, 128, kernel_size=(3,), stride=(1,), padding=(1,), bias=False, padding_mode=circular)
)
(pos_encoder): PositionalEncoding()
(encoder): Encoder(
(attn_layers): ModuleList(
(0): EncoderLayer(
(attention): AttentionLayer(
(inner_attention): ProbAttention(
(dropout): Dropout(p=0.1, inplace=False)
)
(query_projection): Linear(in_features=128, out_features=128, bias=True)
(key_projection): Linear(in_features=128, out_features=128, bias=True)
(value_projection): Linear(in_features=128, out_features=128, bias=True)
(out_projection): Linear(in_features=128, out_features=128, bias=True)
)
(conv1): Conv1d(128, 256, kernel_size=(1,), stride=(1,))
(conv2): Conv1d(256, 128, kernel_size=(1,), stride=(1,))
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
(output_layer): Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
TokenEmbedding(
(tokenConv): Conv1d(19, 128, kernel_size=(3,), stride=(1,), padding=(1,), bias=False, padding_mode=circular)
)
-
-
-
Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
PositionalEncoding()
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
-
-
[]
true
-
-
-
-
Finished
-
1h 2m 32s
30
0.0001
LSTM
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
LSTMModel(
(lstm): LSTM(19, 128, num_layers=2, batch_first=True, dropout=0.2)
(bn_lstm): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=32, out_features=1, bias=True)
)
)
BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
-
-
-
Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=32, out_features=1, bias=True)
)
-
LSTM(19, 128, num_layers=2, batch_first=True, dropout=0.2)
-
-
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
-
-
[]
true
-
-
-
0.2
Finished
-
1h 2m 54s
30
0.0001
Transformer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
TransformerModel(
(enc_embedding): Linear(in_features=19, out_features=128, bias=True)
(pos_encoder): PositionalEncoding()
(transformer_encoder): TransformerEncoder(
(layers): ModuleList(
(0): TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
)
(linear1): Linear(in_features=128, out_features=256, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=256, out_features=128, bias=True)
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
)
)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
(output_layer): Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
Linear(in_features=19, out_features=128, bias=True)
-
-
-
Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
PositionalEncoding()
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
-
TransformerEncoder(
(layers): ModuleList(
(0): TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
)
(linear1): Linear(in_features=128, out_features=256, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=256, out_features=128, bias=True)
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
)
)
)
[]
true
-
-
-
0.1
Finished
-
29m 26s
30
0.0001
1D-CNN
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
CNN1DModel(
(cnn_layers): ModuleList(
(0): Sequential(
(0): Conv1d(19, 64, kernel_size=(7,), stride=(1,), padding=(3,))
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(1): Sequential(
(0): Conv1d(64, 128, kernel_size=(5,), stride=(1,), padding=(2,))
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(2): Sequential(
(0): Conv1d(128, 256, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Identity()
)
)
(global_avg_pool): AdaptiveAvgPool1d(output_size=1)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=288, out_features=128, bias=True)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=128, out_features=64, bias=True)
(5): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
(8): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=288, out_features=128, bias=True)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=128, out_features=64, bias=True)
(5): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
(8): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
-
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
-
-
[]
true
ModuleList(
(0): Sequential(
(0): Conv1d(19, 64, kernel_size=(7,), stride=(1,), padding=(3,))
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(1): Sequential(
(0): Conv1d(64, 128, kernel_size=(5,), stride=(1,), padding=(2,))
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(2): Sequential(
(0): Conv1d(128, 256, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Identity()
)
)
AdaptiveAvgPool1d(output_size=1)
-
0.1
Finished
-
54m 5s
30
0.0001
TCN
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
TCNModel(
(tcn): TemporalConvNet(
(network): Sequential(
(0): TemporalBlock(
(conv1): Conv1d(19, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(19, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(19, 32, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
(1): TemporalBlock(
(conv1): Conv1d(32, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(32, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(32, 64, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
(2): TemporalBlock(
(conv1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(relu): ReLU()
)
(3): TemporalBlock(
(conv1): Conv1d(64, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(64, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(64, 32, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=64, out_features=128, bias=True)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=128, out_features=64, bias=True)
(5): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
(8): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=64, out_features=128, bias=True)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=128, out_features=64, bias=True)
(5): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
(8): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
-
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
TemporalConvNet(
(network): Sequential(
(0): TemporalBlock(
(conv1): Conv1d(19, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(19, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(19, 32, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
(1): TemporalBlock(
(conv1): Conv1d(32, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(32, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(32, 64, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
(2): TemporalBlock(
(conv1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(relu): ReLU()
)
(3): TemporalBlock(
(conv1): Conv1d(64, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(64, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(64, 32, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
)
)
-
[]
true
-
-
-
0.1
Finished
-
30m 53s
30
0.0001
1D-CNN
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
CNN1DModel(
(cnn_layers): ModuleList(
(0): Sequential(
(0): Conv1d(19, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(1): Sequential(
(0): Conv1d(64, 128, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(2): Sequential(
(0): Conv1d(128, 256, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Identity()
)
)
(global_avg_pool): AdaptiveAvgPool1d(output_size=1)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=288, out_features=128, bias=True)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=128, out_features=64, bias=True)
(5): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=288, out_features=128, bias=True)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=128, out_features=64, bias=True)
(5): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
-
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
)
-
-
[]
true
ModuleList(
(0): Sequential(
(0): Conv1d(19, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(1): Sequential(
(0): Conv1d(64, 128, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(2): Sequential(
(0): Conv1d(128, 256, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Identity()
)
)
AdaptiveAvgPool1d(output_size=1)
-
0.2
Finished
-
59m 37s
30
0.0001
iTransformer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
iTransformerModel(
(embedding): TokenEmbedding(
(tokenConv): Linear(in_features=24, out_features=128, bias=True)
)
(pos_encoder): PositionalEncoding()
(encoder): iTransformerEncoder(
(encoder_layers): ModuleList(
(0): TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
)
(linear1): Linear(in_features=128, out_features=256, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=256, out_features=128, bias=True)
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
)
)
(layer_norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
)
(decoder): iTransformerDecoder(
(projection): Linear(in_features=128, out_features=1, bias=True)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): LayerNorm((32,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=33, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=33, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
PositionalEncoding()
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): LayerNorm((32,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
-
-
[]
true
-
-
-
0.1
Finished
-
1h 13m 50s
30
0.0001
TSMixer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
TSMixerModel(
(tsmixer): TSMixer(
(mixer_layers): Sequential(
(0): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(1): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(2): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(3): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(4): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(5): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(6): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(7): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(8): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=1, bias=True)
(projection): Linear(in_features=19, out_features=1, bias=True)
)
)
)
(temporal_projection): Linear(in_features=24, out_features=1, bias=True)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=33, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=33, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
-
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
-
-
[]
true
-
-
-
0.1
Finished
-
1h 2m 4s
30
0.0001
Informer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
InformerModel(
(enc_embedding): TokenEmbedding(
(tokenConv): Conv1d(19, 128, kernel_size=(3,), stride=(1,), padding=(1,), bias=False, padding_mode=circular)
)
(pos_encoder): PositionalEncoding()
(encoder): Encoder(
(attn_layers): ModuleList(
(0): EncoderLayer(
(attention): AttentionLayer(
(inner_attention): ProbAttention(
(dropout): Dropout(p=0.1, inplace=False)
)
(query_projection): Linear(in_features=128, out_features=128, bias=True)
(key_projection): Linear(in_features=128, out_features=128, bias=True)
(value_projection): Linear(in_features=128, out_features=128, bias=True)
(out_projection): Linear(in_features=128, out_features=128, bias=True)
)
(conv1): Conv1d(128, 256, kernel_size=(1,), stride=(1,))
(conv2): Conv1d(256, 128, kernel_size=(1,), stride=(1,))
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
(output_layer): Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
TokenEmbedding(
(tokenConv): Conv1d(19, 128, kernel_size=(3,), stride=(1,), padding=(1,), bias=False, padding_mode=circular)
)
-
-
-
Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
PositionalEncoding()
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
-
-
[]
true
-
-
-
-
Finished
-
1h 3m 10s
30
0.0001
Transformer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
TransformerModel(
(enc_embedding): Linear(in_features=19, out_features=128, bias=True)
(pos_encoder): PositionalEncoding()
(transformer_encoder): TransformerEncoder(
(layers): ModuleList(
(0): TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
)
(linear1): Linear(in_features=128, out_features=256, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=256, out_features=128, bias=True)
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
)
)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
(output_layer): Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
Linear(in_features=19, out_features=128, bias=True)
-
-
-
Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
PositionalEncoding()
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
-
TransformerEncoder(
(layers): ModuleList(
(0): TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
)
(linear1): Linear(in_features=128, out_features=256, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=256, out_features=128, bias=True)
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
)
)
)
[]
true
-
-
-
0.1
Finished
-
54m 38s
30
0.0001
TCN
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
TCNModel(
(tcn): TemporalConvNet(
(network): Sequential(
(0): TemporalBlock(
(conv1): Conv1d(19, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(19, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(19, 32, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
(1): TemporalBlock(
(conv1): Conv1d(32, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(32, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(32, 64, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
(2): TemporalBlock(
(conv1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(relu): ReLU()
)
(3): TemporalBlock(
(conv1): Conv1d(64, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(64, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(64, 32, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=64, out_features=128, bias=True)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=128, out_features=64, bias=True)
(5): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
(8): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=64, out_features=128, bias=True)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=128, out_features=64, bias=True)
(5): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
(8): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
-
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
TemporalConvNet(
(network): Sequential(
(0): TemporalBlock(
(conv1): Conv1d(19, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(19, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(19, 32, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
(1): TemporalBlock(
(conv1): Conv1d(32, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(32, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(32, 64, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
(2): TemporalBlock(
(conv1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(relu): ReLU()
)
(3): TemporalBlock(
(conv1): Conv1d(64, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(64, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(64, 32, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
)
)
-
[]
true
-
-
-
0.1
Finished
-
52m 35s
30
0.0001
1D-CNN
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
CNN1DModel(
(cnn_layers): ModuleList(
(0): Sequential(
(0): Conv1d(19, 64, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(1): Sequential(
(0): Conv1d(64, 128, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(2): Sequential(
(0): Conv1d(128, 256, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Identity()
)
)
(global_avg_pool): AdaptiveAvgPool1d(output_size=1)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=288, out_features=128, bias=True)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=128, out_features=64, bias=True)
(5): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=288, out_features=128, bias=True)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=128, out_features=64, bias=True)
(5): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
-
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
)
-
-
[]
true
ModuleList(
(0): Sequential(
(0): Conv1d(19, 64, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(1): Sequential(
(0): Conv1d(64, 128, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(2): Sequential(
(0): Conv1d(128, 256, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Identity()
)
)
AdaptiveAvgPool1d(output_size=1)
-
0.2
Finished
-
28m 18s
30
0.0001
MLP
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
MLPModel(
(mlp): Sequential(
(0): Linear(in_features=456, out_features=256, bias=True)
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=256, out_features=512, bias=True)
(5): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=512, out_features=256, bias=True)
(9): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(10): ReLU()
(11): Dropout(p=0.2, inplace=False)
(12): Linear(in_features=256, out_features=128, bias=True)
(13): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(14): ReLU()
(15): Dropout(p=0.2, inplace=False)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
-
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
-
-
[]
true
-
-
Sequential(
(0): Linear(in_features=456, out_features=256, bias=True)
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=256, out_features=512, bias=True)
(5): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=512, out_features=256, bias=True)
(9): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(10): ReLU()
(11): Dropout(p=0.2, inplace=False)
(12): Linear(in_features=256, out_features=128, bias=True)
(13): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(14): ReLU()
(15): Dropout(p=0.2, inplace=False)
)
0.2
Finished
-
33m 8s
30
0.0001
CNN-LSTM
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
CNNLSTMModel(
(cnn): Sequential(
(0): Conv1d(19, 64, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(4): Conv1d(64, 128, kernel_size=(3,), stride=(1,), padding=(1,))
(5): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(lstm): LSTM(128, 128, num_layers=2, batch_first=True, dropout=0.2)
(bn_lstm): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=32, out_features=1, bias=True)
)
)
BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
-
Sequential(
(0): Conv1d(19, 64, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(4): Conv1d(64, 128, kernel_size=(3,), stride=(1,), padding=(1,))
(5): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
-
Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=32, out_features=1, bias=True)
)
-
LSTM(128, 128, num_layers=2, batch_first=True, dropout=0.2)
-
-
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
-
-
[]
true
-
-
-
0.2
Finished
-
1h 3m 36s
30
0.0001
LSTM
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
LSTMModel(
(lstm): LSTM(19, 128, num_layers=2, batch_first=True, dropout=0.2)
(bn_lstm): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=32, out_features=1, bias=True)
)
)
BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
-
-
-
Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=32, out_features=1, bias=True)
)
-
LSTM(19, 128, num_layers=2, batch_first=True, dropout=0.2)
-
-
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
-
-
[]
true
-
-
-
0.2
Finished
-
33m 32s
30
0.0001
CNN-LSTM
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
CNNLSTMModel(
(cnn): Sequential(
(0): Conv1d(19, 64, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(4): Conv1d(64, 128, kernel_size=(3,), stride=(1,), padding=(1,))
(5): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(lstm): LSTM(128, 128, num_layers=2, batch_first=True, dropout=0.2)
(bn_lstm): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=32, out_features=1, bias=True)
)
)
BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
-
Sequential(
(0): Conv1d(19, 64, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(4): Conv1d(64, 128, kernel_size=(3,), stride=(1,), padding=(1,))
(5): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
-
Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=32, out_features=1, bias=True)
)
-
LSTM(128, 128, num_layers=2, batch_first=True, dropout=0.2)
-
-
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
-
-
[]
true
-
-
-
0.2
Finished
-
56m 50s
30
0.0001
Transformer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
TransformerModel(
(enc_embedding): Linear(in_features=19, out_features=64, bias=True)
(pos_encoder): PositionalEncoding()
(transformer_encoder): TransformerEncoder(
(layers): ModuleList(
(0): TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=64, out_features=64, bias=True)
)
(linear1): Linear(in_features=64, out_features=128, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=128, out_features=64, bias=True)
(norm1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
)
)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): LayerNorm((32,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
(output_layer): Sequential(
(0): Linear(in_features=96, out_features=32, bias=True)
(1): LayerNorm((32,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=32, out_features=1, bias=True)
)
)
-
-
-
Linear(in_features=19, out_features=64, bias=True)
-
-
-
Sequential(
(0): Linear(in_features=96, out_features=32, bias=True)
(1): LayerNorm((32,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=32, out_features=1, bias=True)
)
PositionalEncoding()
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): LayerNorm((32,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
-
TransformerEncoder(
(layers): ModuleList(
(0): TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=64, out_features=64, bias=True)
)
(linear1): Linear(in_features=64, out_features=128, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=128, out_features=64, bias=True)
(norm1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
)
)
)
[]
true
-
-
-
0.1
Finished
-
27m 57s
30
0.0001
TCN
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
TCNModel(
(tcn): TemporalConvNet(
(network): Sequential(
(0): TemporalBlock(
(conv1): Conv1d(19, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(19, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(19, 32, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
(1): TemporalBlock(
(conv1): Conv1d(32, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(32, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(32, 64, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
(2): TemporalBlock(
(conv1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(relu): ReLU()
)
(3): TemporalBlock(
(conv1): Conv1d(64, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(64, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(64, 32, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=64, out_features=128, bias=True)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=128, out_features=64, bias=True)
(5): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
(8): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=64, out_features=128, bias=True)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=128, out_features=64, bias=True)
(5): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
(8): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
-
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
TemporalConvNet(
(network): Sequential(
(0): TemporalBlock(
(conv1): Conv1d(19, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(19, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(19, 32, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
(1): TemporalBlock(
(conv1): Conv1d(32, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(32, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(32, 64, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
(2): TemporalBlock(
(conv1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(relu): ReLU()
)
(3): TemporalBlock(
(conv1): Conv1d(64, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(64, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(64, 32, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
)
)
-
[]
true
-
-
-
0.1
Finished
Fix model init loading
1h 2m 53s
30
0.0001
LSTM
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
LSTMModel(
(lstm): LSTM(19, 128, num_layers=2, batch_first=True, dropout=0.2)
(bn_lstm): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=32, out_features=1, bias=True)
)
)
BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
-
-
-
Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=32, out_features=1, bias=True)
)
-
LSTM(19, 128, num_layers=2, batch_first=True, dropout=0.2)
-
-
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
-
-
[]
true
-
-
-
0.2
Finished
-
50m 26s
30
0.0001
iTransformer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
iTransformerModel(
(embedding): TokenEmbedding(
(tokenConv): Linear(in_features=24, out_features=128, bias=True)
)
(pos_encoder): PositionalEncoding()
(encoder): iTransformerEncoder(
(encoder_layers): ModuleList(
(0-1): 2 x TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
)
(linear1): Linear(in_features=128, out_features=256, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=256, out_features=128, bias=True)
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
)
)
(layer_norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
)
(decoder): iTransformerDecoder(
(projection): Linear(in_features=128, out_features=1, bias=True)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): LayerNorm((32,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=33, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=33, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
PositionalEncoding()
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): LayerNorm((32,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
-
-
[]
true
-
-
-
-
Finished
-
1h 2m 25s
30
0.0001
TSMixer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
TSMixerModel(
(tsmixer): TSMixer(
(mixer_layers): Sequential(
(0): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(1): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(2): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(3): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(4): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(5): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(6): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(7): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(8): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.1, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=1, bias=True)
(projection): Linear(in_features=19, out_features=1, bias=True)
)
)
)
(temporal_projection): Linear(in_features=24, out_features=1, bias=True)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=33, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=33, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
-
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
-
-
[]
true
-
-
-
-
Finished
-
1h 21m 39s
30
0.0001
Informer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
InformerModel(
(enc_embedding): TokenEmbedding(
(tokenConv): Conv1d(19, 128, kernel_size=(3,), stride=(1,), padding=(1,), bias=False, padding_mode=circular)
)
(pos_encoder): PositionalEncoding()
(encoder): Encoder(
(attn_layers): ModuleList(
(0-1): 2 x EncoderLayer(
(attention): AttentionLayer(
(inner_attention): ProbAttention(
(dropout): Dropout(p=0.1, inplace=False)
)
(query_projection): Linear(in_features=128, out_features=128, bias=True)
(key_projection): Linear(in_features=128, out_features=128, bias=True)
(value_projection): Linear(in_features=128, out_features=128, bias=True)
(out_projection): Linear(in_features=128, out_features=128, bias=True)
)
(conv1): Conv1d(128, 256, kernel_size=(1,), stride=(1,))
(conv2): Conv1d(256, 128, kernel_size=(1,), stride=(1,))
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
(output_layer): Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
TokenEmbedding(
(tokenConv): Conv1d(19, 128, kernel_size=(3,), stride=(1,), padding=(1,), bias=False, padding_mode=circular)
)
-
-
-
Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
PositionalEncoding()
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
-
-
[]
true
-
-
-
-
Finished
-
1h 19m 20s
30
0.0001
Transformer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
TransformerModel(
(enc_embedding): Linear(in_features=19, out_features=128, bias=True)
(pos_encoder): PositionalEncoding()
(transformer_encoder): TransformerEncoder(
(layers): ModuleList(
(0-1): 2 x TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
)
(linear1): Linear(in_features=128, out_features=256, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=256, out_features=128, bias=True)
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
)
)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
(output_layer): Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
Linear(in_features=19, out_features=128, bias=True)
-
-
-
Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
PositionalEncoding()
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
)
-
TransformerEncoder(
(layers): ModuleList(
(0-1): 2 x TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
)
(linear1): Linear(in_features=128, out_features=256, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=256, out_features=128, bias=True)
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
)
)
)
[]
true
-
-
-
-
Finished
-
53m 34s
30
0.0001
TCN
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
TCNModel(
(tcn): TemporalConvNet(
(network): Sequential(
(0): TemporalBlock(
(conv1): Conv1d(19, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(19, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(19, 32, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
(1): TemporalBlock(
(conv1): Conv1d(32, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(32, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(32, 64, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
(2): TemporalBlock(
(conv1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(relu): ReLU()
)
(3): TemporalBlock(
(conv1): Conv1d(64, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(64, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(64, 32, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=64, out_features=128, bias=True)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=128, out_features=64, bias=True)
(5): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
(8): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=64, out_features=128, bias=True)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=128, out_features=64, bias=True)
(5): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
(8): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
-
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
TemporalConvNet(
(network): Sequential(
(0): TemporalBlock(
(conv1): Conv1d(19, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(19, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(2,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(19, 32, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
(1): TemporalBlock(
(conv1): Conv1d(32, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(32, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(2,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(32, 64, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
(2): TemporalBlock(
(conv1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(4,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(relu): ReLU()
)
(3): TemporalBlock(
(conv1): Conv1d(64, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(chomp1): Chomp1d()
(relu1): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(conv2): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(chomp2): Chomp1d()
(relu2): ReLU()
(dropout2): Dropout(p=0.1, inplace=False)
(net): Sequential(
(0): Conv1d(64, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(1): Chomp1d()
(2): ReLU()
(3): Dropout(p=0.1, inplace=False)
(4): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(8,))
(5): Chomp1d()
(6): ReLU()
(7): Dropout(p=0.1, inplace=False)
)
(downsample): Conv1d(64, 32, kernel_size=(1,), stride=(1,))
(relu): ReLU()
)
)
)
-
[]
true
-
-
-
-
Finished
-
1h 19m 56s
30
0.0001
iTransformer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
iTransformerModel(
(embedding): TokenEmbedding(
(tokenConv): Linear(in_features=24, out_features=128, bias=True)
)
(pos_encoder): PositionalEncoding()
(encoder): iTransformerEncoder(
(encoder_layers): ModuleList(
(0-1): 2 x TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
)
(linear1): Linear(in_features=128, out_features=256, bias=True)
(dropout): Dropout(p=0.2, inplace=False)
(linear2): Linear(in_features=256, out_features=128, bias=True)
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.2, inplace=False)
(dropout2): Dropout(p=0.2, inplace=False)
)
)
(layer_norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
)
(decoder): iTransformerDecoder(
(projection): Linear(in_features=128, out_features=1, bias=True)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): LayerNorm((32,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=33, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=33, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
PositionalEncoding()
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): LayerNorm((32,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
-
-
[]
true
-
-
-
-
Finished
-
57m 54s
30
0.0001
TSMixer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
TSMixerModel(
(tsmixer): TSMixer(
(mixer_layers): Sequential(
(0): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.2, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.2, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(1): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.2, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.2, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(2): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.2, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.2, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(3): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.2, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.2, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(4): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.2, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.2, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(5): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.2, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.2, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=19, bias=True)
(projection): Identity()
)
)
(6): MixerLayer(
(time_mixing): TimeMixing(
(norm): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout(p=0.2, inplace=False)
(fc1): Linear(in_features=24, out_features=24, bias=True)
)
(feature_mixing): FeatureMixing(
(norm_before): TimeBatchNorm2d(456, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_after): Identity()
(dropout): Dropout(p=0.2, inplace=False)
(fc1): Linear(in_features=19, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=1, bias=True)
(projection): Linear(in_features=19, out_features=1, bias=True)
)
)
)
(temporal_projection): Linear(in_features=24, out_features=1, bias=True)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=33, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=33, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
-
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
-
-
[]
true
-
-
-
-
Finished
-
52m 22s
30
0.0001
1D-CNN
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
CNN1DModel(
(cnn_layers): ModuleList(
(0): Sequential(
(0): Conv1d(19, 64, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(1): Sequential(
(0): Conv1d(64, 128, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(2): Sequential(
(0): Conv1d(128, 256, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Identity()
)
)
(global_avg_pool): AdaptiveAvgPool1d(output_size=1)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=288, out_features=128, bias=True)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=128, out_features=64, bias=True)
(5): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=288, out_features=128, bias=True)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=128, out_features=64, bias=True)
(5): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
-
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
)
-
-
[]
true
ModuleList(
(0): Sequential(
(0): Conv1d(19, 64, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(1): Sequential(
(0): Conv1d(64, 128, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(2): Sequential(
(0): Conv1d(128, 256, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Identity()
)
)
AdaptiveAvgPool1d(output_size=1)
-
0.2
Finished
-
1h 13m 3s
30
0.0001
Informer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
InformerModel(
(enc_embedding): TokenEmbedding(
(tokenConv): Conv1d(19, 128, kernel_size=(3,), stride=(1,), padding=(1,), bias=False)
)
(pos_encoder): PositionalEncoding()
(encoder): Encoder(
(attn_layers): ModuleList(
(0): EncoderLayer(
(attention): AttentionLayer(
(inner_attention): ProbAttention(
(dropout): Dropout(p=0.2, inplace=False)
)
(query_projection): Linear(in_features=128, out_features=128, bias=True)
(key_projection): Linear(in_features=128, out_features=128, bias=True)
(value_projection): Linear(in_features=128, out_features=128, bias=True)
(out_projection): Linear(in_features=128, out_features=128, bias=True)
)
(conv1): Conv1d(128, 256, kernel_size=(1,), stride=(1,))
(conv2): Conv1d(256, 128, kernel_size=(1,), stride=(1,))
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.2, inplace=False)
(activation): GELU(approximate='none')
)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
(output_layer): Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
TokenEmbedding(
(tokenConv): Conv1d(19, 128, kernel_size=(3,), stride=(1,), padding=(1,), bias=False)
)
-
-
-
Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
PositionalEncoding()
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
-
-
[]
true
-
-
-
-
Finished
-
28m 14s
30
0.0001
MLP
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
MLPModel(
(mlp): Sequential(
(0): Linear(in_features=456, out_features=256, bias=True)
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=256, out_features=512, bias=True)
(5): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=512, out_features=256, bias=True)
(9): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(10): ReLU()
(11): Dropout(p=0.2, inplace=False)
(12): Linear(in_features=256, out_features=128, bias=True)
(13): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(14): ReLU()
(15): Dropout(p=0.2, inplace=False)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
-
Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
-
-
-
-
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
-
-
[]
true
-
-
Sequential(
(0): Linear(in_features=456, out_features=256, bias=True)
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=256, out_features=512, bias=True)
(5): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=512, out_features=256, bias=True)
(9): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(10): ReLU()
(11): Dropout(p=0.2, inplace=False)
(12): Linear(in_features=256, out_features=128, bias=True)
(13): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(14): ReLU()
(15): Dropout(p=0.2, inplace=False)
)
-
Finished
-
33m 21s
30
0.0001
CNN-LSTM
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
CNNLSTMModel(
(cnn): Sequential(
(0): Conv1d(19, 64, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(4): Conv1d(64, 128, kernel_size=(3,), stride=(1,), padding=(1,))
(5): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(lstm): LSTM(128, 128, num_layers=2, batch_first=True, dropout=0.2)
(bn_lstm): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=32, out_features=1, bias=True)
)
)
BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
-
Sequential(
(0): Conv1d(19, 64, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(4): Conv1d(64, 128, kernel_size=(3,), stride=(1,), padding=(1,))
(5): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
-
Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=32, out_features=1, bias=True)
)
-
LSTM(128, 128, num_layers=2, batch_first=True, dropout=0.2)
-
-
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
-
-
[]
true
-
-
-
-
Finished
-
1h 2m 30s
30
0.0001
Transformer
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
TransformerModel(
(enc_embedding): Linear(in_features=19, out_features=128, bias=True)
(pos_encoder): PositionalEncoding()
(transformer_encoder): TransformerEncoder(
(layers): ModuleList(
(0): TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
)
(linear1): Linear(in_features=128, out_features=256, bias=True)
(dropout): Dropout(p=0.2, inplace=False)
(linear2): Linear(in_features=256, out_features=128, bias=True)
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.2, inplace=False)
(dropout2): Dropout(p=0.2, inplace=False)
)
)
)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
(output_layer): Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
-
-
-
Linear(in_features=19, out_features=128, bias=True)
-
-
-
Sequential(
(0): Linear(in_features=192, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=1, bias=True)
)
PositionalEncoding()
Sequential(
(0): Linear(in_features=3, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
-
TransformerEncoder(
(layers): ModuleList(
(0): TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
)
(linear1): Linear(in_features=128, out_features=256, bias=True)
(dropout): Dropout(p=0.2, inplace=False)
(linear2): Linear(in_features=256, out_features=128, bias=True)
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.2, inplace=False)
(dropout2): Dropout(p=0.2, inplace=False)
)
)
)
[]
true
-
-
-
-
Finished
-
1h 2m 47s
30
0.0001
LSTM
5
-
-
-
-
8192
false
24
0.0001
16
30
5
["air_temperature","wind_speed","relative_humidity","cloud_type","solar_zenith_angle","clearsky_ghi","total_precipitable_water","surface_albedo","nighttime_mask","cld_opd_dcomp","aod"]
[8192,3]
ghi
[8192,24,19]
data/processed/test_normalized_20250430_145205.h5
-
data/processed/train_normalized_20250430_145157.h5
true
data/processed/val_normalized_20250430_145205.h5
EEEM073-Solar-Radiation
tin-hoang
LSTMModel(
(lstm): LSTM(19, 128, num_layers=2, batch_first=True, dropout=0.2)
(bn_lstm): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(static_proj): Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=32, out_features=1, bias=True)
)
)
BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
-
-
-
Sequential(
(0): Linear(in_features=160, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=32, out_features=1, bias=True)
)
-
LSTM(19, 128, num_layers=2, batch_first=True, dropout=0.2)
-
-
Sequential(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
)
-
-
[]
true
-
-
-
-
1-100
of 167