Comment
runs.summary["eval_results"]
- 3 of 620
How do I pass WandbCallback to an XGBoost model for logging metrics and saving the trained model to Weights & Biases Artifacts?
```python from wandb.xgboost import WandbCallback import xgboost as XGBClassifier ... # Start a wandb run run = wandb.init() # Pass WandbCallback to the model bst = XGBClassifier() bst.fit(X_train, y_train, callbacks=[WandbCallback(log_model=True)]) # Close your wandb run run.finish() ```
To pass `WandbCallback` to an XGBoost model for logging metrics and saving the trained model to Weights & Biases Artifacts, follow these steps: 1. Install and import the necessary modules: ```python from wandb.xgboost import WandbCallback import wandb import xgboost as xgb ``` 2. Initialize a W&B run: ```python run = wandb.init() ``` 3. Train your XGBoost model and pass the `WandbCallback` to the `fit()` method: ```python # Prepare your data and train-test split, for example X_train, y_train bst = xgb.XGBClassifier() bst.fit(X_train, y_train, callbacks=[WandbCallback(log_model=True)]) ``` 4. When training is complete, finish the W&B run: ```python run.finish() ``` Here's an example in context: ```python import wandb from wandb.xgboost import WandbCallback import xgboost as xgb from sklearn.model_selection import train_test_split from sklearn.datasets import make_classification # Start a wandb run run = wandb.init() # Load or create your dataset X, y = make_classification(n_samples=1000, n_features=20, n_classes=2) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Train the XGBoost model with WandbCallback bst = xgb.XGBClassifier() bst.fit(X_train, y_train, callbacks=[WandbCallback(log_model=True)]) # Finish the wandb run run.finish() ``` This will log metrics, the configuration, and save the trained model to Weights & Biases Artifacts.
['https://docs.wandb.ai/guides/integrations/xgboost', 'https://github.com/wandb/examples/blob/master/examples/boosting-algorithms/lightgbm-regression/train.py', 'https://github.com/wandb/wandb/blob/main/wandb/integration/lightgbm/__init__.py']
[0.23293667, 0.28185582, 0.2977323]
How do I log a model as an artifact version in wandb?
``` art = wandb.Artifact("my-object-detector", type="model") art.add_file("saved_model_weights.pt") wandb.log_artifact(art) ```
To log a model as an artifact version in wandb, follow these steps: 1. Initialize a W&B run to start tracking. ```python import wandb wandb.init() ``` 2. Serialize your model to disk periodically (and/or at the end of training) using the serialization process provided by your modeling library (e.g., PyTorch or Keras). 3. Create a Model Version as an Artifact and add the serialized model files to it. ```python art = wandb.Artifact(f'my-model-{wandb.run.id}', type="model") art.add_file("path/to/model.pth", "model.pth") ``` 4. Log the Model Version. ```python if model_is_best: # If the model is the best model so far, add "best" to the aliases wandb.log_artifact(art, aliases=["latest", "best"]) else: wandb.log_artifact(art) ``` Here's an example in a training loop: ```python import wandb # Initialize a W&B run to start tracking wandb.init() # Training loop (simplified) for epoch in range(num_epochs): # Train and evaluate the model (omitted) # Serialize your model (e.g., for PyTorch) torch.save(model.state_dict(), "path/to/model.pth") # Create a Model Version as an Artifact art = wandb.Artifact(f'my-model-{wandb.run.id}', type="model") art.add_file("path/to/model.pth", "model.pth") # Log the Model Version if model_is_best: wandb.log_artifact(art, aliases=["latest", "best"]) else: wandb.log_artifact(art) ``` This will log your trained model as an artifact in your W&B project with proper versioning. Remember to replace the serialization and saving with the appropriate commands for your specific model and training library.
['https://docs.wandb.ai/guides/track/launch', 'https://docs.wandb.ai/guides/models/walkthrough', 'https://docs.wandb.ai/guides/integrations/huggingface', 'https://docs.wandb.ai/guides/integrations/add-wandb-to-any-library']
[0.1773625, 0.21069235, 0.21689638, 0.25404486]
How do I read a CSV file into a Pandas DataFrame and save it to a variable named `new_iris_dataframe` using wandb?
```python import wandb import pandas as pd # Read our CSV into a new DataFrame new_iris_dataframe = pd.read_csv("iris.csv") ```
With wandb, you can log a CSV file and visualize it in a W&B Dashboard. To read a CSV file into a Pandas DataFrame using wandb, follow these steps: 1. First, import your CSV file and read it into a new DataFrame. ```python import pandas as pd # Read the CSV into a new DataFrame new_iris_dataframe = pd.read_csv("iris.csv") ``` 2. Start a new W&B run to track and log data. ```python import wandb run = wandb.init(project="My_Project") ``` 3. Convert the DataFrame into a W&B Table. ```python iris_table = wandb.Table(dataframe=new_iris_dataframe) ``` 4. Log the table to visualize with a run. ```python run.log({"iris": iris_table}) ``` This will log the `new_iris_dataframe` pandas DataFrame containing the data from the "iris.csv" file. Here's the complete code snippet: ```python import pandas as pd import wandb # Read the CSV into a new DataFrame new_iris_dataframe = pd.read_csv("iris.csv") # Start a W&B run to track and log data run = wandb.init(project="My_Project") # Convert the DataFrame into a W&B Table iris_table = wandb.Table(dataframe=new_iris_dataframe) # Log the table to visualize with a run run.log({"iris": iris_table}) ``` Note that wandb is not used specifically for reading the CSV file; Pandas is performing that task. Wandb is used for logging and visualizing the data.
['https://docs.wandb.ai/guides/track/log/working-with-csv', 'https://docs.wandb.ai/guides/track/log/working-with-csv']
[0.20116183, 0.26913416]
query
orig_response
orig_document
response
documents
scores
retrieval_match
string_distance
model_score.text
1
2
3
Run: azure-moon-8
1
Add a comment
Created with ❤️ on Weights & Biases.
https://wandb.ai/wandbot/wandbbot/reports/Weave-eval_results-23-04-12-23-04-41---Vmlldzo0MDQ4MzIx