Ayush-thakur's group workspace
ChannelWise-Target
What makes this group special?
Tags
sleek-puddle-10
Notes
Train EfficientNetB0 by stacking target spectrograms channel-wise
Tags
effnetb0
full-channel
Author
State
Finished
Start time
June 9th, 2021 1:45:05 AM
Runtime
5m 51s
Tracked hours
5m 50s
Run path
ayush-thakur/kaggle-seti-exp/35f0g71y
OS
Linux-4.19.0-16-cloud-amd64-x86_64-with-debian-10.9
Python version
3.7.10
Command
SETI/train-seti-experiments.ipynb
System Hardware
| CPU count | 8 |
| GPU count | 1 |
| GPU type | Tesla V100-SXM2-16GB |
W&B CLI Version
0.10.31
Group
ChannelWise-TargetJob Type
train
Config
Config parameters are your model's inputs. Learn more
- {} 14 keys▶
- "CNN"
- 64
- 100
- "ChannelWise-Target"
- 224
- 224
- "GCP"
- 0.001
- "EffNetB0"
- 5
- 1
- 42
- 0.2
- true
Summary
Summary metrics are your model's outputs. Learn more
- {} 9 keys▶
- 0.9957096576690674
- 12
- 0.23908136785030365
- 17
- {} 4 keys▶
- "graph-file"
- "media/graph/graph_summary_7c10e28a.graph.json"
- "7c10e28a1b30d746624cded62c9f23fb75dc40e43a40b7b0950babb89a1b36d6"
- 985
- 0.07980848103761673
- 0.8665245771408081
- 0.8614668846130371
- 0.24628296494483948
Artifact Outputs
This run produced these artifacts as outputs. Total: 1. Learn more
Type
Name
Consumer count
Loading...