Skip to main content

Ayush-thakur's group workspace

ChannelWise-Target

What makes this group special?
Tags

sleek-puddle-10

Notes

Train EfficientNetB0 by stacking target spectrograms channel-wise

Tags
effnetb0
full-channel
State
Finished
Start time
June 9th, 2021 1:45:05 AM
Runtime
5m 51s
Tracked hours
5m 50s
Run path
ayush-thakur/kaggle-seti-exp/35f0g71y
OS
Linux-4.19.0-16-cloud-amd64-x86_64-with-debian-10.9
Python version
3.7.10
Command
SETI/train-seti-experiments.ipynb
System Hardware
CPU count8
GPU count1
GPU typeTesla V100-SXM2-16GB
W&B CLI Version
0.10.31
Job Type
train
Config

Config parameters are your model's inputs. Learn more

  • {} 14 keys
    • "CNN"
    • 64
    • 100
    • "ChannelWise-Target"
    • 224
    • 224
    • "GCP"
    • 0.001
    • "EffNetB0"
    • 5
    • 1
    • 42
    • 0.2
    • true
Summary

Summary metrics are your model's outputs. Learn more

  • {} 9 keys
    • 0.9957096576690674
    • 12
    • 0.23908136785030365
    • 17
    • {} 4 keys
      • "graph-file"
      • "media/graph/graph_summary_7c10e28a.graph.json"
      • "7c10e28a1b30d746624cded62c9f23fb75dc40e43a40b7b0950babb89a1b36d6"
      • 985
    • 0.07980848103761673
    • 0.8665245771408081
    • 0.8614668846130371
    • 0.24628296494483948
Artifact Outputs

This run produced these artifacts as outputs. Total: 1. Learn more

Loading...