Josselin's group workspace
soft_modularization
What makes this group special?
Tags
soft_modularization_4
Notes
Author
State
Finished
Start time
September 14th, 2023 4:46:48 AM
Runtime
14h 1m 43s
Tracked hours
14h 1m 34s
Run path
single-shot-robot/PTSL_MTRL50-1M/zfvn513c
OS
Linux-5.15.0-76-generic-x86_64-with-glibc2.10
Python version
3.8.0
Git repository
git clone https://github.com/JosselinSomervilleRoberts/mtrl.git
Git state
git checkout -b "soft_modularization_4" ea3e61c6ee556dec14f1592437e0c08362d94677
Command
main.py setup=metaworld env=metaworld-mt50 agent=state_sac experiment.num_eval_episodes=10 experiment.num_train_steps=1000000 setup.seed_ref=4 setup.num_seeds=1 setup.name=soft_modularization replay_buffer.batch_size=1280 agent.multitask.num_envs=50 agent.multitask.should_use_disentangled_alpha=True agent.multitask.should_use_task_encoder=True agent.encoder.type_to_select=feedforward agent.multitask.actor_cfg.should_condition_model_on_task_info=True agent.multitask.actor_cfg.should_condition_encoder_on_task_info=False agent.multitask.actor_cfg.should_concatenate_task_info_with_encoder=False agent.multitask.actor_cfg.moe_cfg.should_use=True agent.multitask.actor_cfg.moe_cfg.mode=soft_modularization agent.multitask.should_use_multi_head_policy=False agent.encoder.feedforward.hidden_dim=50 agent.encoder.feedforward.num_layers=2 agent.encoder.feedforward.feature_dim=50 agent.actor.num_layers=4 agent.multitask.task_encoder_cfg.model_cfg.pretrained_embedding_cfg.should_use=False
System Hardware
CPU count | 6 |
Logical CPU count | 12 |
GPU count | 1 |
GPU type | NVIDIA GeForce GTX 1650 |
W&B CLI Version
0.15.3
Group
soft_modularizationConfig
Config parameters are your model's inputs. Learn more
- {} 21 keys▶
- 326
- 4
- "state_sac"
- 50
- 0
- 0
- 1,280
- "feedforward"
- 10,000
- 0.0003
- 0.0003
- 0.0003
- 0.0003
- 0.0003
- 10
- 50
- 1,000,000
- 50
- "none"
- true
- 4
Summary
Summary metrics are your model's outputs. Learn more
- {} 112 keys▶
- 446.1634646226054
- 0
- 36.15405914013871
- 0
- -462.3237910814264
- 0
- -1,700.475336594404
- 0
- 340.2036387360566
- 0
- 134.6127354463489
- 0
- 272.69434418129987
- 0
- -146.8015532980996
- 0
- 123.34472111998292
- 0
- 81.84319092538198
- 0
- 2.170348293869879
- 1
- 407.5051132944145
- 1
- -8.058100205528875
- 0
- 72.83580844800748
- 0
- 592.5104576799075
- 1
- 237.65502111281737
- 0
- 362.92634004423263
- 1
- 389.5098182169704
- 0
- -49.611152964959615
- 0
- -7.178246026944359
- 0
- 0.36659489730643496
- 0
- 192.28967923883303
- 0
- 240.13881859518887
- 0
- 84.54993893941243
- 7.432565450668335
- 6,665
- 0.14
46 ... 95▶▶96 ... 107▶▶
Artifact Outputs
This run produced these artifacts as outputs. Total: 1. Learn more
Type
Name
Consumer count
Loading...