Free for students, educators, and academic researchers. Always.

W&B helps academics of every stripe collaborate on research, reproduce their models, share their newest insights, and build better models faster.

Trusted by leading universities, top researchers, and over 500,000 ML practitioners

Trusted and cited by hundreds of cutting-edge researchers

From climate science to medical research to fundamental breakthroughs in NLP and computer vision, Weights & Biases is behind the scenes making research more reproducible and collaborative. Check out some of the 500+ papers that have cited W&B.

Resources for Educators, Teaching Assistants, and Students

We’ve included introductory content to help get you and your students started using Weights & Biases to enable collaborative, repeatable machine and deep learning in your classroom, research lab, or student-run organization.

W&B for research & education

How to cite Weights & Biases

If you used W&B and we helped make your research successful, we’d love to hear about it. You can cite us with the information to the right but what we’d like most is to hear from you about your work. Email us at research@wandb.com and we’ll get in touch.

@misc{wandb,
title = {Experiment Tracking with Weights and Biases},
year = {2020},
note = {Software available from wandb.com},
url={https://www.wandb.com/},
author = {Biewald, Lukas},
}

Log everything so you lose nothing

Experiments you can’t reproduce aren’t going to help your next big discovery. With Weights & Biases, you choose what you log and when you log it so you can do less manual admin and a lot more model training.

Integrated with every popular framework and thousands of ML repos

Weights & Biases plays well with others. From PyTorch, Keras, and JAX to niche repos across the ML landscape, chances are, you’ll find us integrated there. Check out our most popular integrations (and how they work) in our docs.

Want to host a W&B event at your university? Click on the button to your left and we'll get in touch.

Learn from the experts

Want to learn about MLOps, CI/CD, LLMs, or just how to get started on Weights & Biases? We have free courses to get you started! You can find them all below:

Collaborate with your team in real-time

Weights & Biases is made for collaboration. With each and every experiment logged to a single system, your research team shares access to all dataset and model versions, git commits, and your recent experiments.

The Weights & Biases platform helps you streamline your workflow from end to end

Models

Experiments

Track and visualize your ML experiments

Sweeps

Optimize your hyperparameters

Model Registry

Register and manage your ML models

Automations

Trigger workflows automatically

Launch

Package and run your ML workflow jobs

Weave

Traces

Explore and
debug LLMs

Evaluations

Rigorous evaluations of GenAI applications

Core

Artifacts

Version and manage your ML pipelines

Tables

Visualize and explore your ML data

Reports

Document and share your ML insights

Track, compare, and visualize your ML models with 5 lines of code

Quickly and easily implement experiment logging by adding just a few lines to your script and start logging results. Our lightweight integration works with any Python script.

    
     # Flexible integration for any Python script

import wandb


# 1. Start a W&B run

wandb.init(project='gpt3')


# 2. Save model inputs and hyperparameters

config = wandb.config

config.learning_rate = 0.01


# Model training here


# 3. Log metrics over time to visualize performance

wandb.log({"loss": loss})
    
   
    
     import wandb

# 1. Start a W&B run

wandb.init(project='gpt3')


# 2. Save model inputs and hyperparameters

config = wandb.config

config.learning_rate = 0.01


# Model training here


# 3. Log metrics over time to visualize performance

with tf.Session() as sess:

 # ...
 wandb.tensorflow.log(tf.summary.merge_all())
    
   
    
     import wandb

# 1. Start a new run

wandb.init(project="gpt-3")


# 2. Save model inputs and hyperparameters

config = wandb.config

config.learning_rate = 0.01


# 3. Log gradients and model parameters

wandb.watch(model)

for batch_idx, (data, target) in

enumerate(train_loader):


if batch_idx % args.log_interval == 0:

# 4. Log metrics to visualize performance

wandb.log({"loss": loss})

    
   
    
     import wandb

from wandb.keras import WandbCallback

# 1. Start a new run

wandb.init(project="gpt-3")


# 2. Save model inputs and hyperparameters

config = wandb.config

config.learning_rate = 0.01


... Define a model


# 3. Log layer dimensions and metrics over time

model.fit(X_train, y_train, validation_data=(X_test, y_test),

callbacks=[WandbCallback()])

    
   
    
     import wandb


wandb.init(project="visualize-sklearn")


# Model training here


# Log classifier visualizations

wandb.sklearn.plot_classifier(clf, X_train, X_test, y_train,
 y_test, y_pred, y_probas, labels, model_name='SVC', 
feature_names=None)


# Log regression visualizations

wandb.sklearn.plot_regressor(reg, X_train,
 X_test, y_train, y_test,  model_name='Ridge')
 

# Log clustering visualizations

wandb.sklearn.plot_clusterer(kmeans, X_train, cluster_labels, labels=None, model_name='KMeans')

    
   
    
     # 1. Import wandb and login

import wandb
wandb.login()

# 2. Define which wandb project to log to and name your run

wandb.init(project="gpt-3", run_name='gpt-3-base-high-lr')


# 3. Add wandb in your Hugging Face `TrainingArguments`

args = TrainingArguments(... , report_to='wandb')


# 4. W&B logging will begin automatically when your start training your Trainer

trainer = Trainer(... , args=args)

trainer.train()

    
   
    
     import wandb

# 1. Start a new run

wandb.init(project="visualize-models",
name="xgboost")


# 2. Add the callback

bst = xgboost.train(param, xg_train, num_round,
watchlist, callbacks=
[wandb.xgboost.wandb_callback()])


# Get predictions

pred = bst.predict(xg_test)

    
   

Just a few of the top universities using W&B

Whether you're at the same university or on different continents, W&B makes academic research easy. And we're free for students, educators, and university researchers.