無料ガイド:EU AI 法

EU AI 法のホワイトペーパー欧州連合は今年後半に AI 法を可決する予定です。この新しい規制の枠組みは、内部プロセスや外部製品に機械学習を使用する企業に劇的な影響を与えるでしょう。法律の可決に向けて今から準備をしておくことで、非常に有利なスタートを切ることができます。

この電子書籍では、次の内容について説明します。

• EU が AI のリスクをどのように評価するか
• 新しい法律による影響が最も大きいシステムと最も影響を受けないシステムはどれですか
• 自分自身を守るためのベスト プラクティス
• W&B が AI ガバナンスにどのように役立つか

右側のフォームに記入していただくと、コピーが受信箱に送信されます。 /スパン>

スケーラブルで安全

当社は、大規模な分散トレーニングでスケールアップするソリューションを提供しており、安全なホスト型クラウドまたはセルフホスト型展開の独自のプライベート クラウドでホストできます。

重みとバイアスを使用すると、次のことが可能になります。

重要な開発者リソースをコアビジネスに集中させます

新しい機械学習モデルをより迅速に起動し、やり取りを減らします

集中記録システムでIPを保護

新しい ML エンジニアを迅速にオンボーディングし、重複した作業を回避します

ケーススタディ と TRI

概要

トヨタ研究所の使命は、世界で最も安全なモビリティを構築することです。 TRI の機械学習チームは自動運転を追求しており、重みとバイアスの記録システムを使用してモデルを再現可能にしています。

  • 企業規模: 300 社以上
  • 業種: 自動運転車

問題

Adrien Gaidon が率いる ML チームは、モデルをトレーニングするための世界クラスのインフラストラクチャを構築しましたが、貴重な結果を追跡してバージョン付けするための優れた方法がありませんでした。

彼らは中央記録システムの必要性をすぐに認識しましたが、社内でソリューションを構築することはチームの中核目標から逸れてしまいました。

「現時点では、統計的またはその他の方法で、機械学習の信頼性を保証することは非常に困難です。安全性が重要なシステムを導入するには、それが実際に機能する必要があります。車に積んで命を危険にさらすのではなく命を救うことができるように、どうすれば安全にできるでしょうか。」

Adrien Gaidon

トヨタ総合研究所

解決

TRI チームは、実験追跡問題に対するさまざまなソリューションを比較し、機械学習プロジェクトを調整するための最適なプラットフォームとして Weights & Biases に落ち着きました。

ML チームは、実験の追跡と予測の視覚化のために脆弱な内部ツールやアドホックなソリューションをいじくり回す代わりに、W&B の軽量の実験追跡と視覚化ソリューションを使用して標準化することができました。

W&B ダッシュボードは、機械学習の実践者にコマンド センターを提供し、データセットとモデルのバージョン間で比較し、すべての実験と結果の信頼できる記録を維持します。 ML エンジニアはモデル開発の貴重な作業に自由に集中できるようになり、プロジェクトの進捗が加速します。

「例えば安全基準が非常に高いため、公道でのテストが非常に難しいロボット システムや自動運転車を使用している場合、同時に継続的な導入と継続的な導入が必要な場合には、指標を明確に定義する必要があります。迅速な反復が必要です。」

Adrien Gaidon

トヨタ総合研究所

Weights & Biases を使用して世界中のトップ イノベーターに加わりましょう